Defense In Depth:
Anti-SPAM for sendmail Environments

by David Bank, CCSE, CNE, CNA
v1.50 (2007-November-11)
© 2006-2007 David Bank

The Need for Effective Anti-SPAM

E-Mail under attack

E-Mail was the Internet’s first “killer app”. From humble beginnings as a sub-function of FTP, E-Mail
has grown into an important part of any network infrastructure. Street addresses and phone numbers disappear
in favor of E-Mail addresses. Individuals register “vanity” Domain names. An address in a “cool” E-Mail
Domain, like @gmail.com, has become a status symbol.

Unlike postal (aka snail) mail, E-Mail places the cost burden primarily on the recipient (or the recipient's
service provider), not the sender. This economic imbalance has given rise to the phenomenon of SPAM, also
called Unsolicited Commercial E-Mail (UCE). In the mid-1990s, SPAM was a relatively minor annoyance. Now,
the sheer volume of SPAM is a threat to the viability of E-Mail as a communications medium.

By most estimates, 80% or more of E-Mail is SPAM""® Mail servers face an ever-increasing onslaught
of fraudulent connections trying to pound SPAM through to users. SPAM chews up bandwidth, sucks down disk
space, and adds to the clutter of the electronic desktop that’s now a part of many workplaces. If E-Mail is to
remain a viable tool, effective anti-SPAM defenses are a regrettable necessity.

A SPAM-fighting philosophy

The anti-SPAM philosophy of this paper embodies the military concept of “defense in depth”, a strategy
that seeks to resist, delay and obstruct the attacker (make no mistake, spammers are attackers) with multiple
defensive layers, rather than attempting to stop the attacker outright with a single defensive layer. Also known as
an “elastic defense”, a successful implementation of this concept results in an anti-SPAM defense that is easily
adapted to new threats, is difficult for attackers to trick, and minimizes false-positives.

In practice, this paper describes an anti-SPAM defense designed to stop SPAM as early and often as
possible, without relying on a single defensive technique. The sooner a connecting host can be identified as a
SPAM source, the sooner the connection can be dropped, and the less bandwidth, CPU time and disk space the
spammer gets to waste. To this end, this paper's approach relies on pre-acceptance tools to detect the obviously
fraudulent connections early in the E-mail process. By eliminating easily-detected SPAM early, resources are
conserved for dealing with the “smarter” spammer later in the process.

Page 1 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Some anti-SPAM arrangements rely primarily on post-acceptance tools, such as SpamAssassin.
While this paper advocates the use of SpamAssassin, it is engaged very late in the anti-SPAM process.
The reasoning is simple: SpamAssassin requires that the E-Mail be transmitted. From the spammer's
perspective, the “payload” has been delivered; the victim's bandwidth, CPU and disk space have been
successfully wasted. The concept of “defense in depth” is oriented toward stopping as much SPAM as
possible before it reaches an “expensive” tool like SpamAssassin.

Because SPAM is also used as a vector for virus propagation, and malware-controlled machines
(aka ‘bots) are used by spammers, anti-Virus (AV) software is considered an important component of
anti-SPAM defenses. The configurations presented in this paper include using AV both to defend
systems from viruses and to help detect SPAM.

Of course, there are any number of schools of thought as to how to fight SPAM. This paper
discusses one particular school; if you find that it doesn't work for you, develop or adopt a different
school of thought. The purpose of this paper is not to gain converts, but to present software and
techniques found to provide reasonably effective' defenses at a reasonable (very low) cost. This is not to
say that other software combinations or techniques are not “effective”. The Alternatives section, below,
offers additional ideas.

Finally, the Electronic Frontier Foundation has published a white paper entitled Noncommercial
Email Lists: Collateral Damage in the Fight Against Spam"'. Whatever your SPAM-fighting philosophy,
you should consider the issues presented in that paper, and tailor your strategy appropriately. Of
particular importance, have a viable method for legitimate senders to reach you and request whitelisting;
additionally, you should have a mechanism for your users to request consideration for specific senders.

RBLs: Good or Evil?

Along with many schools of thought for anti-SPAM, there are schools of thought about Real-time
Blackhole Lists, or RBLs. In brief, an RBL is a list of hosts/Domains that have been identified, by the
organization hosting the RBL, as a source of SPAM.

Some ardent SPAM fighters decry RBLs as a blunt instrument, a tool that is clumsy at best and
dangerous at worst. There have been examples of “legitimate” sites/Domains/ISPs finding themselves
listed on a popular RBL,, much to the dismay of their users/customers. It is true that RBLs can provide
bad information.

However, an RBL is merely a tool, one of many available to combat SPAM. You, as the mail
system administrator, have the power to decide how you will use the information from the RBL. In the
simplest approach, you can reject any RBLed host; this is frequently how RBLs are used, and the main
reason their use is decried by some in the anti-SPAM community. Alternatively, you can leverage other
tools that will let you use RBLs as just one input in the anti-SPAM process.

Therefore, RBLs are neither good nor evil. It’s how they are used that makes the difference.

Page 2 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank
Tool selection

This paper presents anti-SPAM defenses that rely on three Free/Open Source Software (FOSS)
packages: MIMEDefang'”, SpamAssassin'”' and ClamAV"™.. All of these integrate with the ubiquitous
sendmail® mail server software, which is also a FOSS package.

These software choices basically require use of a Linux or UNIX system as the underlying OS for
the configurations presented in this paper. Although ports of these softwares exist, enabling you to run
them on other platforms, the necessary tweaks or adjustments are outside the scope of this paper.

As of this writing, the current versions of these tools are:

sendmail v8.14.2
MIMEDefang v2.63

SpamAssassin v3.2.3
ClamAV 0.91.2

The details of building/installing these softwares, and their general configuration, are outside the
scope of this paper. However, if you build the tools from source, the How to Build Your Defenses
section below touches on some build options specific to the configurations in this paper. If you use pre-
compiled packages, check the build options used by the maintainer.

What is a MILTER?

The configurations presented in this paper rely upon the MILTER functionality of sendmail to
create a cohesive anti-SPAM system. A sendmail MILTER is an external program (MIMEDefang, in this
paper) that participates in the SMTP conversation between sendmail and the connecting mailhost.

SMTP conversations proceed in steps: the initial connection, HELO, MAI L FROM , RCPT TO.
and DATA are the primary steps with which we are concerned. Anti-SPAM defenses can be engaged at
each step. During each step, sendmail applies whatever logic it is configured to use (for example, during
the initial connection step, Connect : entries in the sendmail access table, if any match, are applied).
Then, assuming sendmail has decided to allow the connection to proceed, the information sent by the
connecting host is passed to the MILTER, which may perform its own analysis and return an action to
sendmail. While multiple MILTERs may be used, each being engaged in series, this paper will consider
a single-MILTER design.

If you don't yet understand the basics of MILTERs, it would be a good idea to read up on them
before proceeding with the configurations discussed in this paper™"". It is important that MIMEDefang
is compiled using the libmilter library appropriate to the version of sendmail with which it will
communicate.

Page 3 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank
Alternatives

As mentioned above, there are many anti-SPAM tools. This paper covers some that are effective
for particular situations. Your mileage, as they say, may vary. Other tools out there include:
Vipul’s Razor'
Distributed Checksum Clearinghouse (DCC)"!
Pyzor'""
SnertSoft's sendmail MILTERs'
SpamBayes"*

Many of these tools can be integrated with MIMEDefang and augment the configurations shown

in this paper. Some tools function best in a stand-alone manner. Choose the tools that best meet your
needs.

How to Build Your Defenses

This paper covers an anti-SPAM defense for a mail environment that uses a mail relay at its
border. This mail relay doesn’t host user mailboxes; instead, it is a single point of entry/exit for all E-
Mail entering or leaving the network. While a singular mail relay is discussed, the configurations
presented are equally applicable for a clustered or round-robin environment where multiple machines
share the mail handling load. The design is also easily extended to a scenario where such a relay handles
E-Mail for multiple Domains.

Splitting mail routing apart from mailbox hosting has several advantages that outweigh the
increase in complexity, in most situations. First, users attempting to access their mailboxes don't have to
compete with the spammers for the server's attention. Next, the relay host can be hardened to a high
degree, exposing only minimal ports to the outside world. Finally, some anti-SPAM techniques work
better when the E-Mail is not destined for a mailbox hosted on the local server.

Standards and Assumptions

This paper makes a number of assumptions about the target environment, including the use of a
modern Linux or UNIX (or UNIX-like) operating system, and that the software tools (see Tool selection
above) are already installed and working. As noted above, installation of the tools is outside of the scope
of this document.

Instead, this paper focuses on configuration of those tools with a specific goal of fighting SPAM.
Since the options selected at compile-time can affect the ability of these tools to help in the fight, some
important ones will be mentioned. Note that SpamAssassin is installed as a Perl module, and so does not
have compilation options"”. Similarly, sendmail v8.13.x and later has MILTER support enabled by
default and so its options are omitted.

Page 4 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

ClamAV: SPAM-fighting Compilation Options

--W t h-zl i b=/path/to/zlib

This option is mentioned to emphasize that support for zlib is necessary if you want
clamd to be able to scan compressed file attachments. Scanning compressed file
attachments is important to prevent malware from slipping by in a compressed form.

--w t h-user =clam

Using this option, you can specify a non-privileged user ID under which the clamd and
freshclam daemons will run. The default value is clam. This user name must exist or the
daemons will not run. This option is important as a security measure; while clamd is
launched as root, never configure it to run as a privileged user. This option can be
overridden with the User statement in the clamd.conf file (discussed below).

--W t h- gr oup=clam

Similar to the previous option, you can specify the Group ID under which the clamd and
freshclam daemons will run. The default value is clam. This Group name must exist or
the daemons will not run. Again, do not allow the daemons to run as an inappropriate
Group.

- - enabl e- bi gst ack

Spammers are perfectly happy to attack your systems in order to SPAM them. This option
helps clamd resist stack overflow attacks by altering the program code. The result is a
program stack size 64KB larger that whatever is specified as the standard stack size for
the operating system (usually defined via /usr/include/stdio.h). RAM is relatively cheap,
and enabling this option is a fairly inexpensive form of insurance against attacks that
depend on triggering excessive recursion in clamd.

--w thout-1ibcurl
curl is a FOSS package for programmatically accessing data using URLs. Within
ClamAV, it is used to check URLs in E-Mail messages/attachments for malware. The goal

is to thwart the malware author who relies on gullible users following the link in a SPAM
E-Mail.

Page 5 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

A perfectly good software package, the goal of curl is laudable. If, in your environment,
leveraging ClamAV in this fashion is appropriate, then by all means enable curl
(assuming you have it installed already). Within the configuration presented in this paper,
curl is not used for several reasons — it’s regarded as the job of the local system’s A/V
scanner to detect malware downloads from web pages, the resources necessary for a mail
relay to perform this task are potentially excessive, and such investigations open up DoS
or overflow attacks against the relay.

MIMEDefang: SPAM-fighting Compilation Options

--wW t h- sendnmni | =/usr/lib/sendmail

Included mainly as a reminder that this paper is geared towards a configuration using
modern sendmail as the MTA. Remember that MIMEDefang requires the use of a Queue
Runner (MSP) instance of sendmail. Integration with modern versions of PostFix"*' may
be possible, but are outside the scope of this paper.

--W t h- user =defang

This option defines the User ID under which MIMEDefang will run. The default is
defang. The daemons launch as root, then switch user context to this ID. You should not
allow the daemons to run as a privileged user ID.

- - enabl e- debuggi ng

Using this option causes the MIMEDefang Multiplexor to add debugging messages to its
debug file, which is hard coded as /var/log/mdefang-event-debug.log. The file must exist
or the messages will not be written. This option is not required for the configurations
presented in this paper, but may be useful in troubleshooting. It is important to not
confuse this compilation option, which only affects the Multiplexor, with the - d
command-line switch on the mimedefang executable.

Page 6 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Configuring Your SPAM Fighting Arsenal

We'll look at each individual component, starting with the run-time configuration options to
which you should pay particular attention.

ClamAV: Configuration File

In the design proposed in this paper, clamd is set up to interface via a UNIX socket. Using a
socket, any program can communicate with clamd, but this configuration will focus on MIMEDefang.

The clamd daemon relies exclusively on its configuration file, and does not accept command-line
configuration parameters. However, you can specify the path and name of the configuration file using
the - ¢ command-line parameter. Absent that, clamd looks for clamd.conf in whatever path that was
defined during compilation (c.f. the sysconfdir compilation option).

The default configuration file is both complete and well-documented. This paper will focus on
those configuration settings that are important to the interface with MIMEDefang. Configuration
settings with BOOLEAN (e.g. on/off, true/false, yes/no) values are set by commenting/uncommenting
the entry in clamd.conf.

LogSysl og

By default, clamd does not perform any logging. Uncommenting this entry enables
clamd to log to the syslogd daemon. The syslogd daemon must be running, and must be
configured to accept log messages for the appropriate Facility.

LogFaci |l ity LOG_LOCALS

Unless this entry is used to specify a different Facility, a syslog-enabled clamd will log
to Facility LOCALG by default. The parameter of this entry uses the syntax
LOG_<Facility>; in this example the Facility is changed from the default to LOCALS.

LogVer bose

If you find clamd's log entries too laconic, you may increase the verbosity by
uncommenting this entry.

Pi dFi | e /var/run/clamd.pid

In its default configuration, clamd does not create a Process ID, or PID, file. This entry
allows you to specify a path and a filename. Note that this location must be writable by

Page 7 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

the User ID under which the daemon runs (however, since clamd is started as root, the
file does not need to exist or have particular ownership/mode beforehand). Having clamd
create a PID file is very useful for ensuring correct start-up and shut down sequences.

Local Socket /var/spool/MIMEDefang/clamd.sock

clamd can interface with a local or a network socket. The local socket is more secure; the
network socket allows other hosts to submit data streams to clamd for scanning. In the
configuration presented in this paper, the local socket is used for the MIMEDefang
connection. The value of this entry should be the full path and filename of the socket.

Fi xSt al eSocket

You should uncomment this entry, which enables the ability of clamd to clean up a stale
(unused) socket in the event of a system crash or other problem that leaves the socket file
in place when clamd isn't running. If you don't enable this, and something happens to
cause clamd to terminate but not clean up its socket, then clamd will be unable to restart
until the socket file is removed.

St reamvaxLengt h 2M

This entry defines the maximum size of a data stream that clamd will attempt to scan for
viruses. If this limit is reached, clamd will terminate the connection. The value is a
positive integer followed by a unit specifier, which may be either K or M for kilobytes or
megabytes, respectively. The specifier is case-insensitive, so K or mmay also be used.

The default value is 10M however, you should change this to match the maximum
message size that your MTA will accept (sendmail uses the

conf MAX_MESSACE_SI ZE macro to determine this, and is not limited by default).
You can also configure MIMEDefang to not attempt submission of messages that exceed
this size (code to do that is shown in the default filter file).

Sel f Check 3600

This configuration entry specifies the interval between clamd checks of its database
integrity and freshness. The value is read in seconds and defaults to 1800 (30 minutes).
Here, we increase it to 3600, or one check per hour. If you prefer a more or less frequent
interval, change this accordingly.

Page 8 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank
User defang

Without specifying a User ID under which clamd should run (either here or at compile-
time), it will execute as root (although the daemon will give up its special privileges once
it is running). To aid integration with MIMEDefang, as is the configuration presented in
this paper, you need to have clamd run as the same User ID as MIMEDefang (whatever
that may be).

Al | owSuppl enent ar yG oups

By default, when context is switched from root to the User ID specified in the previous
entry, the Secondary Groups are not included in the security context. The Group ID in the
/etc/passwd entry is the User ID's Primary Group; any additional Group IDs listed in
/etc/group are Secondary Groups. Uncommenting this entry allows the clamd daemon

to claim the security privileges of the Secondary Groups, and is needed in this
configuration to allow the interface with MIMEDefang to work properly.

Ar chi veMaxFi | eSi ze 1M

This entry specifies a limit on file sizes extracted from archives (not the archive itself). If
a file extracted from an archive is over the limit, it will not be scanned. This helps avoid

a DoS attack that uses huge attachments, each compressed and stored within another
compressed file. Similar to the St r eamvVaxLengt h entry, the value is a positive integer
followed by unit specifier. The default value is 10M and you should adjust this as your
system requires. This example specifies a fairly low limit.

Primarily, you want clamd to be a resource for MIMEDefang. The job of clamd is to scan data
streams sent by MIMEDefang and report back on the detection of viruses. The “brains” of our
arrangement are mostly located in the MIMEDefang configuration, and you're asking clamd to be
thorough, but not “smart”.

SpamAssassin: Configuration File

Within the configuration presented in this paper, the usual SpamAssassin configuration methods
are not used. Instead, there is a special version of the configuration file, sa-mimedefang.cf, located in the
MIMEDefang configuration directory. A sample of this is in the [Reference] section below.

It is crucial to understand that, in the configuration presented, SpamAssassin cannot make any
changes to the message headers or body. That is, you may instruct SpamAssassin to change those things,
but the changes will not actually propagate back through MIMEDefang.

Page 9 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Similar to ClamAYV, the system design presented in the paper regards SpamAssassin as a resource
for MIMEDefang. The job of SpamAssassin is to evaluate E-Mails submitted by MIMEDefang using its
rulesets, and issue a judgment on the “spamminess” of the E-Mail. The ultimate decision of how to react
to that evaluation is made by MIMEDefang.

With respect to the particular configurations of this paper, there are some entries in sa-
mimedefang.cf that are important:

rewite_subject O

As discussed above, no changes to the E-Mail made by SpamAssassin will actually take effect.
You can save the occasional CPU cycle by telling SpamAssassin not to bother with rewriting the
Subject: header.

report _header 1

While SpamAssassin cannot modify the E-Mail, it can generate a report that will be passed back
to MIMEDefang. So it's OK to turn this on.

trusted networks 127.0.0.1

Don't forget to tell SpamAssassin to trust your network, or mail hosts, as appropriate to your
environment. This is actually a catch-all, as the MIMEDefang configuration presented in this
paper suggests not submitting your “internal” E-Mail to SpamAssassin.

defang mne O

Again, since SpamAssassin is unable to make lasting changes to the E-mail, there's no point in it
wasting time fiddling with MIME headers.

MIMEDefang: Configuration File

The system design outlined in this paper makes MIMEDefang the centerpiece of the anti-SPAM
defenses. Hence, its configuration is the most complex part of this paper, and the process is made more
involved by the fact that even a minimal MIMEDefang system has a relatively complex configuration
file.

Unlike the other components, the MIMEDefang configuration file is actually part of the program
itself. It's written in Perl, and at least a passing understanding of Perl is necessary to modify the
configuration. The file is named mimedefang-filter and is stored in the MIMEDefang configuration
directory.

Page 10 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

In the discussion of MILTERSs, it was noted that the SMTP conversation proceeds in steps, and
that the MILTER is involved at each step. In the simplest configuration, a MILTER would do nothing
and merely return processing control back to sendmail. This is what happens when a MIMEDefang filter
file defines no filtering function for a particular step.

In its default configuration, MIMEDefang only performs filtering at the DATA step in the SMTP
conversation. By invoking the mimedefang executable with certain parameters, and adding appropriate
functions to your mimedefang-filter file, you can engage MIMEDefang earlier in the SMTP conversation
and perform a number of anti-SPAM activities. This table shows which function names in mimedefang-
filter are invoked at which step in the SMTP conversation, and also what command-line parameter is
needed on the mimedefang invocation:

mimedefang invocation

SMTP step mimedefang-filter function(s) command-line parameter
initial connection filter_relay -r

HELO filter_helo -H

MAI L FROM filter_sender -S

RCPT TO filter_recipient -t

DATA filter_begin, filter, N A

filter_multipart, filter_end

The contents of mimedefang-filter are discussed in more detail below.

Putting It All Together

This paper discusses a design that has interlocking components, and these create dependencies.
When fully implemented, MIMEDefang cannot function without clamd already running on the system.
Similarly, sendmail will be unable to run without MIMEDefang's daemons also already running. You
should insure that your system startup (and shutdown) procedures account for these dependencies.

MIMEDefang defines a number of “background” functions in the standard mimedefang-filter
file. You should read about and understand these functions, but doing so is not necessary to implement
the configurations from this paper. The function names are fi | t er _bad_fi | ename() and
def ang_war ni ng() .

You should also read and understand the documentation in the sample mimedefang-filter file, and
the mimedefang-filter (5) and the mimedefang (8) man pages. In particular, pay attention to the
parameters given to, and required back from, each function. The code examples below assume you have
studied the documentation and understand how to properly invoke and return the functions used.

The default file also only defines the fil t er* functions associated with the DATA step of the
SMTP conversation. This paper will start by adding the additional f i | t er _* functions needed for the
other steps, then re-visiting the DATA step. Remember, to enable these additional functions,
mimedefang must be invoked with the related command-line parameter, and the associated function
must be defined in mimedefang-filter.

Page 11 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

About the Perl example code

Perl is a complex and still-evolving language. It lacks a formal specification, meaning that the
only thing defining Perl is the perl interpreter itself. As many Perl programmers know, there's always a
different way to code a given algorithm in Perl.

The code examples below are not the only way to code the ideas presented; they may not even be
the “best” way to code them in Perl. The objective of the code examples in this paper is not to produce
the tersest or even most efficient Perl code. Rather, the goal is to clearly delineate the programming logic
using syntactically valid Perl (as opposed to, say, pseudo-code). This allows readers with minimal Perl
skills to understand and implement the code, while more experienced Perl coders are free to re-write the
Perl code in their own unique idiom.

filter relay

When mimedefang is invoked with - r parameter, and this function is defined, you can use
MIMEDefang to augment sendmail's connection filtering. This function is referenced after sendmail has
completed any RBL checks, unless sendmail's FEATURE(del ay_checks) is in use, in which case
this function is referenced before sendmail actually performs its RBL checks. sendmail will check and
apply any Connect: entries in the access table before MIMEDefang is passed the relay information.

While you can still use the access table for other functions, such as G eet Pause,
Cl i ent Conn and C i ent Rat e, the best advantage to filter_rel ay() isthat you can create a
finer-grained RBL checking than is offered by sendmail. The trouble with sendmail's RBL functions is
that the first RBL hit causes a Reject. This leads to the “blunt instrument” charge outlined in RBLs:
Good or Evil? above.

Below is some sample code to implement a relay filter. This code is designed to check the IP
address of the connecting relay against a set of RBLs, much the way that sendmail's RBL functions
would do. The difference is that you can control which, and how many, RBL hits actually result in a
rejection of the connection. You can also distinguish a lookup failure from an RBL hit.

The code first checks that the IP address of the connecting host is not in a hash of “internal” host
addresses; this prevents your filter from wasting resources on your own hosts, based on the assumption
they are “trusted”. If the IP doesn't match an internal host, then several blacklist services are checked.
The code presented has a timeout of 8 seconds, and the RBL check will exit early if 3 or more RBLs
report a match. At least 3 of the RBLs must “hit” or the connection will not be rejected — unless there are
2 hits and one or more RBL server checks failed.

Page 12 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

GLOBAL VARI ABLES - decl ared outside any function

HHRHHHH R AT H SRR HHH R R R TR SRR H 7R
Hash of internal hosts
- Key: | P addresses we consider internal
- Value: Flag as to if host if Virus-scan exenpt (0=No, 1=Yes)
BHHHBHHHBHHH B HH B H B H R R
% ur Host s=("127.0.0.1", O,
“10.0.0.1", O,
“192.168.1.1", 1);

List of RBL servers to check
@BL_I|ist=qw{ sbl.spanhaus.org dnsbl.njabl.org bl.spancop. net
chl . abuseat.org };

Timeout (in seconds) for RBL check

$RBL_ti neout =8;

Maxi mum nunber of positive RBL responses before we don't care any nore
$RBL_max=3;

[...]

sub filter_relay
{

Read paraneters passed to function
ny($ip, $nane)=@;

Pointer to hash returned from RBL check function
my($r bl hash) ;

Local variables for analysis
ny($rbl server, $rblresult, $rblscore);

ny($tenpfail _flag)=0;

Search the hosh of our hosts using the $hostip argunent

if (exists($QurHosts{$ip}))
{
The connecting host is our own host, don't bother checking further
return(' CONTINUE' , 'ok');

}

{
This host is not our host — check RBLs
$rbl hash=rel ay_i s_bl acklisted_multi($ip, $RBL_tinmeout, $RBL_nax, @RBL_list);

}

Evaluate RBL results
foreach $rbl server (keys(%brbl hash))
{
$r bl resul t =$r bl hash- >{$rbl server};
|If the value returned by a specific RBL server is an array, then

el se

the RBL had a listing for this IP
if (ref($rblresult) eq “ARRAY")
{

$rbl score=%$rbl score + 1;

Page 13 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

}

el se
{
if ($rblresult eq “SERVFAIL")

{

A lookup failed — set a flag to TEMPFAIL the mail if
enough other RBLs have the IP |isted

$tenpfail _flag=1;

}
End of |F

}
End if IF

}

End of FOR | oop
If the RBL score is RBL_nax or higher, we REJECT the connection
if ($rblscore >= $RBL_nmax)

return(' REJECT', “$name appears on nultiple IP blacklists; see SPAM
dat abase | ookup at http://ww. dnsstuff.coni);

1f we are here, then the P was not on a sufficient nunber of RBLs to be
rej ected. However, we can TEMPFAIL the connection if the IP was |listed
on “RBL_max - 1” RBLs and there was at |east one RBL | ookup failure

if (($rblscore + $tenmpfail _flag) == $RBL_nax)

{
return(' TEMPFAI L', “Please try again later”);

}
|If we have reached this point, the connection is either not blacklisted, or
does not appear on enough blacklists — allow it to proceed
return(' CONTINUE' , 'ok');

}
End of sub filter_relay

The benefit of this code design is that, unlike the sendmail RBL functions, no single RBL can
cause an E-Mail to be rejected. However, there are some downsides:

1) Your DNS server will be working harder; all RBLs will be queried, rather than the query
process stopping at the first positive response.

2) RBLed senders who are legitimate will have no way to reach your postmaster to request
whitelisting. The requirement that multiple RBLs show a listing for an given IP hopefully
prevents accidental rejections. Alternatively, you could implement this RBL check code
infilter_recipient(),thereby emulating sendmail's
FEATURE(del ay_checks).

Page 14 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

filter helo

This function, available when mimedefang is invoked with -H parameter, allows you to perform
filtering of connections based on the identification provided during the HEL Ostep of the SMTP
conversation. Prior to sendmail v8.14.0, sendmail performed no effective filtering!” at this point in the
conversation, although using the G- eet Pause feature (available in sendmail v8.13.0 and later) will
cause sendmail to drop a host that attempts to send anything prior to your sendmail host presenting its
greeting banner.

The example code below checks to see if the connecting host is trusted, and returns an “OK to
proceed” result immediately if it is, thus bypassing all the other checks. If the host is not trusted, the
code examines the HEL Ostring provided by the remote host by first seeing if it is an IP address. If the
HELOwas an IP, it is checked for surrounding square brackets, and to see if it matches the actual IP of
the connecting host. If the HELOwas not an IP address, it's checked for indications that it is an FQDN,
and that it is not, or doesn't contain, the string “localhost”. The global variables introduced in
filter_relay() arealso used in this function.

sub filter_helo

{

Read paraneters passed to function
ny($ip, $helo)=@;

Search the hosh of our hosts using the $ip argunent
if (exists($QurHosts{$ip}))
{
The connecting host is our own host, don't bother checking further
return(' CONTINUE' , 'ok');
}

The connecting host is foreign, examne its HELO for fraud
if ($helo =~ /A(\[?2)(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})(\]1?2) %)

HELO | ooks like an IP — the conmparison will split the string
into 3 variables; $1 will have [or be undefined, $2 will
have the | P address without any brackets; $3 will have

] or be undefined

The | P address portion should *not* be identical to the original

HELO string — if it is, the original HELO | acked brackets
if ($2 eq $helo)

{

Rej ect connection — invalid HELO

return(' REJECT', “$helo is not a valid HELO);
Since the HELO was an | P address, it should match the | P of
t he connecti ng host
if ($2 ne $ip)
{
HELO does not match actual |IP — fraudul ent HELO
return(' REJECT', “FRAUDULENT HELO. $helo is not $ip”);

Page 15 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

}
End of IF
el se
HELO | ooks |i ke a host nanme string

If the HELOis an FQDN, it will contain a “.”
if (index($helo, '.") == -1)

HELO i s not an FQDN
return (' REJECT', "INVALID HELO $helo not FQDN');

HELO shoul d not contain “l ocal host”
if ($helo =~ /local host/i)

The HELO contains “l ocal host”

return(' REJECT', "INVALID HELO $helo not valid identification");
}
End of IF

}

End of IF

If we got to here, the HELO was reasonabl e
return(' CONTINUE , 'ok');

}
End of sub filter_helo

Rejecting obviously fraudulent (or, more charitably, invalid) HEL Ostrings is an effective anti-
SPAM measure. You'll see a significant drop in SPAM making it through your defenses by implementing
these simple tests. And by dropping such obviously fraudulent HEL Gs, you'll prevent spammers from
consuming more than a small amount of your resources.

Note that the FQDN check in the code above is somewhat simplistic, and it would not be terribly
difficult to fool it. Spammers are notoriously lazy individuals, however, and so the check is (as of this
writing) fairly effective. Possible improvements, left as an exercise to the reader, include:

1) Checking that $hel o does not claim to be a machine in a Domain being hosted - the only hosts
using your Domain(s) in their HELOstring should be your own hosts, not a foreign host - see
filter_sender () below for a similar code example

2) Checking the TLD portion of $hel o for a valid TLD; for example, host . domai n. ar g
could be rejected since arg is not a valid TLD

3) Checking the SPF records for the Domain to verify that $i p is a permitted mailhost for the
Domain — Perl modules are available from CPAN to do this

4) Attempting to resolve $hel o through DNS and, if no entry is found, issuing a REJECT (be
sure to account for a SERVFAIL result from DNS, perhaps by a TEMPFAIL of the E-mail)

Page 16 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank
filter sender

Invoking mimedefang with - S parameter, and including this function in your filter, allows you
to perform checking at the MAI L FROM step of the SMTP conversation. sendmail can perform some
filtering here, mainly based on From: entries in the access table. MIMEDefang offers much more
granular control.

While spammers frequently forge the source E-Mail address of their SPAM, a good use of this
function is to code a filter of any MAI L FROM claiming to be an address in your Domain(s) but
originating from a foreign mail server. This code example builds on the one fromfi |l ter _rel ay(),
and adds an additional global variable:

BHBHBHBHBH R R
Declare a hash of hosted Domai ns

- Key: Donmin Names we host

- Value: Aflag as to if the Domain should be
receiving E-Mail (0=No, 1=Yes)
HHHHHEH AR R R R R

%ur Domai ns=("domai nl.tld", 1,

“domain2.t1d”, 0 };

[...]

sub filter_sender

{

Read paraneters passed to function
ny($sender, $ip, $hostname, $helo)=@;

Local vari abl es

ny(@hksender) ;
my($chk, $chksenderdomain);

Search the hosh of our hosts using the $ip argunent
if (exists($QurHosts{$ip}))
{

The connecting host is our own host, don't bother checking further
return(' CONTINUE , 'ok');

}
The sender cannot claimto be a user in any Domain we host since we have a
al ready elimnated the sendi ng host as being ours
Make sure the address we're checking is in all |ower-case

$chk = | c($sender);

Renove any angl e-brackets from address

$chk =~ s/~<//;

$chk =~ s/>$//;

Split the Sender address into Address and Domai n Nane
@hksender=split(/\@, $chk);

Extract just the Domain

$chksender donai n=$chksender[1] ;

Page 17 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

if (exists($CurDonuri ns{$chksender donai n}))

Rej ect connection — fraudul ent Foreign sender claimng to be |ocal
return(' REJECT', “FRAUDULENT ADDRESS: $helo is not $chksenderdonmain”);

}
End of |IF

End of filter_sender

Filtering on the sender address can be problematic when dealing with legitimate users connecting
from remote networks. The MIMEDefang documentation demonstrates how fi | t er _sender () can
check the SMI'P AUTH status of the sending host and allow authenticated senders to proceed.

While that is a reasonable approach, it is not used in this paper. Instead, the author prefers a
solution where the legitimate sender connects to an internal mail host protected by a VPN, or uses
something like SSH Port Forwarding, to insure that access to mail relay services is limited to
authenticated senders without bogging down the sendmail relay handling authentication.

filter recipient

Available when mimedefang is invoked with - t parameter, this function allows you to perform
filtering of connections at the RCPT TO. step of the SMTP conversation. This filter is invoked with
each RCPT TGO issued by the connecting host, and you should code your filter with that in mind.

Asnotedinfilter_relay(), placing the RBL checksinfilter_recipient() is
equivalent to FEATURE(del ay_checks) in sendmail, and allows you to create an address to which
even RBLed senders can write to request whitelisting. Unless you have very loose rules on when you
reject E-Mail from blacklisted hosts, having this sort of “escape hatch” is important.

Alternatively, if you performed the RBL checks earlier and simply maintained that information,
then you could reference the RBL results inf i | t er _r eci pi ent () without having to perform the
RBL checks for each RCPT TQ . See the mimedefang-filter (5) man page entry concerning
maintaining state between functions for very important information about this technique; you would have
to perform the RBL checksinfilter _hel o() orfilter_sender (), asit's not possible to
preserve state information gathered infilter_rel ay().

Because the system design presented in the paper calls for MIMEDefang to run on a mail relay,
with no local user mailboxes, there's no way (in the stock configuration) for either sendmail or
MIMEDefang to know if a given recipient actually exists on the server to which the E-Mail will
eventually be delivered. Spammers often launch “dictionary spam”, sending E-mail to all possible
addresses in a Domain. Without some way to validate a recipient address, your mail relay could end up
generating a lot of bounce messages as final delivery of the E-Mail fails. Since spammers typically forge
the From: address, your mail relay may find itself trying to send bounce messages to non-existent
hosts/Domains, or to some poor end-user whose E-Mail address was used in the forged From: header.

Page 18 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

To help avoid this, you can code f i | t er _r eci pi ent () to check the validity of each
recipient using MIMEDefang's built-in function nd_check _agai nst _snt p_ser ver (), which can
verify the presence of an address on a target server (assuming that target server supports the operation by
responding with the appropriate failure message for non-existent addresses during RCPT TO:). You
should read and understand the mimedefang-filter(S) man page entry concerning Rejecting Unknown
Users Early before implementing filter code like this example:

sub filter_recipient()

{

Read the paraneters passed to the function

ny($recipi ent, $sender, $hostip, $hostnane, $first, $helo, $rcpt_mailer,
$rcpt _host, $rcpt_addr) = @;

Local variable to hold results of nd_check_agai nst_sntp_server
ny(@hk_result);

A HELO string for M MeEDefang to use so that |l og entries on the other
mai | server can be distingui shed as M MeEDef ang checki ng
ny($chkhel 0) =" mi nedef ang. ourdomnmi n. t1d”;

Search the hosh of our hosts using the $hostip argunent

if (exists($QurHosts{$hostip}))
{
The connecting host is our own host, don't bother checking further
return(' CONTINUE , 'ok');

}
el se
Lo o | o
Verify the recipient address on $rcpt_host is valid using
nd_check_agai nst_sntp_server

@hk_result = nd_check_agai nst _snt p_server ($sender, $recipient, $chkhel o,
$rcpt _host);
}

Return the result without interpretation
return(@hk_result);

}

End of sub filter_recipient

An obvious improvement to the example code, left as an exercise for the reader, would be to
interpret the results in more detail, and have program logic to make decisions based on those results.
Becausefilter_recipient() iscalled foreach RCPT TGO individually, tracking the number of
failures racked up by a specific connection would require recording state information. If you did that,
however, you would be able to set a limit on the number of failed recipient addresses you would accept
before doing something more drastic than rejecting an individual address (for example, adding the
connecting host to your own internal blacklist, or reporting it to your favorite RBL service)”.

Page 19 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

The Default MIMEDefang Filter

The mimedefang-filter file included with MIMEDefang lays out a good, if basic, message filter. It
is composed of a set of global variables, followed by the default set of functions:
filter _bad filenanes(),filter_begin(),filter(),filter_multipart(),
defang warni ng() andfilter_end().

At a minimum, you need to change the global variable $DaenonAddr ess to a suitable E-Mail
address. The global $MaxM MEPar t s is commented out by default. You should enable the limit by
uncommenting it, and can also change the value. If set to a positive integer, then messages with more
than that number of MIME parts will be bounced at the DATA step. The goal of this setting is to foil DoS
attacks based on handing your mail server an E-Mail with an impossibly huge number of MIME parts.
When enabling this protection, use the value provided in the default filter, or perhaps even a lower limit.

The global $nd_gr aphdef ang_I| og_enabl e is uncommented, defines the logging Facility
as MAIL and specifies summary logging output. Using this feature is optional, but consider directing
the output to a different Facility. Comment it out if you want to disable these log entries.

You can also add your own global variables, and the code examples above rely on some added
global variables. Beyond those in the examples, consider adding a $Fi | t er Ver si on variable, for use
in your logging statements. This would allow you to associate log entries to a particular revision of your
filter. For example (matching the version of this paper):

$Fi |l terVersion="1.50";

If you decide to use your own logging statements, via the nd_sysl og() function, to augment or
replace the md_gr aphdef ang_| og() function used by default, then be sure to set the global
$Sysl ogFaci | i ty to the proper syslogd Facility, like so:

$Sysl ogFacility="1ocal 3";

The example filter associated with this paper makes extensive use of the md_sysl| og function
to track filter progress and program flow. This is done for illustrative purposes, and you may not wish to
have such extensive logging in a production filter. However, detailed logging can help ensure that your
filter is performing as expected”".

In this paper's configuration, the clamd AV scanner is used, so we can simply instruct
MIMEDefang to use that feature with the globals:

$Features{' Virus: CLAMD } = 1;
$C amdSock = "/var/spool / def ang/ M MEDef ang/ cl and. sock";

Page 20 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Additionally, SpamAssassin is used, you can go ahead and set specific globals for it. Define the
path to a MIMEDefang version of the SpamAssassin configuration file like so:

$path_sa _conf = "/path/tol/sa-m nedefang.cf";

Because SpamAssassin can bog down with very large messages, you can set a size limit global
for it, and then check the size of an E-mail against this value prior to calling SpamAssassin. This
example will limit SpamAssassin scans to messages that are 100KB or smaller:

$SAScanSi zeLimit = 100 * 1024;

Finally, you can initialize SpamAssassin as part of your global setup:

spam assassin_init($path_sa_conf);
spam assassin_init()->conpile _now(l);

Now you're ready to start with the core filtering functions. Because sample functions are
included in the default MIMEDefang package, code examples will not be shown here. Instead, reference

the default filter file included in MIMEDefang.

filter_ begin

This function marks the entry point to the core MIMEDefang E-Mail filter, and is called
following the DATA step of the SMTP conversation, after the E-Mail has been received and stored in a
queue. In addition to all the information about the sending host, you also have the full message headers
and access to a wide array of sendmail macros. Unlike the earlier functions, global variables set in
filter_begin() persistthroughfilter_end().

The default version of this function is very basic. It examines the message headers for suspicious
characters, then submits the E-Mail to any virus scanners that were found when MIMEDefang
initialized, using the generic message_cont ai ns_vi rus() function. If suspicious characters or a
virus are found, the message is discarded; if the virus scanner has a temporary failure, then the message
is TEMPFAILed; otherwise, the message is allowed to proceed.

One obvious change tofi | t er _begi n() would be to bypass some or all of the default checks
for your own internal hosts. The previous code examples demonstrate code to check the connecting host
IP against a list of IPs, and inf i | t er _begi n() the global variable $Rel ay Addr contains the
connecting host IP. Since that is a global variable, it is also available infilter(),filter_end()
andfilter_mul tipart (). The choice to exempt your internal hosts from header checks or virus
scanning is as much a business as a technology decision, and is specific to your organization.

If a message contains a virus, you can choose to accept the message, strip out the virused part in
filter() orfilter_multipart(),and allow the text to proceed, with or without a notification

Page 21 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

of the alteration. If you allow the message to proceed, you can also use the fact that the message
contained a virus to enhance the SPAM score result from SpamAssassin. The base fi | t er _begi n()
code shows a flag variable, $FoundVi r us, but it is local, not global. You can add it to the globally-
declared variables and its state will persist across functions called after f i | t er _begi n() .

A caution: until recent versions of MIMEDefang, the fi | t er _begi n() function did not take
any parameters. If you find older code examples on the 'Net, be sure to account for the version of
MIMEDefang when using them in your own filter file.

filter

Called for any MIME part of a message that does not itself contain other MIME parts nested
within it, this function is optional. The MIMEDefang documentation refers to these MIME parts as a
leaf part. It's possible for malware to hide in MIME parts, especially malformed MIME parts, so
evaluating these parts is important.

One tip for all functions after fi | t er _begi n() istousethereturn if
nmessage_rej ect ed() construct early in the function, as demonstrated in the sample code. This
allows functions after f i | t er _begi n() to exit before wasting a lot of time/effort if the E-Mail has
already been marked for rejection.

The sample code shows several useful checks, including filtering on “bad” filenames and
malformed MIME. Additionally, if you have a global variable to check, you can see what the virus
scanner returned for the message, and drop the infected part.

Again, exactly how you respond to these things is up to you. The example code included in the
MIMEDefang package may or may not be appropriate to your environment. Also, consider exempting
your own hosts, as appropriate, from some or all of the checks. If you wish to filter based on the
character set used by the message, this is a good place to do it, but be careful.

filter multipart

Like f i | t er (), this function is optional. It's called for any MIME part that contains other parts
(a non-leaf part). The same checks performed in filter () are generally applicable here, and the
remarks above for that function also apply.

filter end

This function marks the final steps of the filtering process, and if the E-Mail has not yet been
rejected, then the output of this function will determine its fate. By now, hopefully, you've eliminated
most of the “dumb” things that spammers and malware writers do when they spew their garbage.

It's at this point you submit the E-Mail to SpamAssassin for an evaluation. Again, consider

Page 22 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

exempting your own hosts from this check, if appropriate. The example code included with
MIMEDefang shows the general process of handing the message off to SpamAssassin and evaluating the
results. Adding headers and the SpamAssassin report are also shown.

It would also be at this point where you would implement additional features, such as adding to
the SPAM score if the message had a virus, or checking some database of per-recipient SPAM limits
(where messages with a SPAM score over a certain amount, defined by each recipient, would be rejected
or discarded). If you do implement per-recipient SPAM limits, read carefully the documentation on the
del ete_reci pi ent () function and how it works. If you preserved the RBL information from an
earlier function, you may choose to use it to enhance the SPAM score at this point as well.

If the message had a significant SPAM score, consider stripping any X- Spam Scor e or similar
headers from the message, prior to adding your own. Spammers have no compunction about spoofing
such headers to fool client-based anti-SPAM tools.

Attheend of fi | t er _end(), the default filter file also references two other functions,
renove_r edundant _htm _parts() andacti on_rebuil d() . You should carefully read the
documentation for both before implementing them. Consider exempting your own hosts from their
effects, if appropriate. E-Mails that contain both text and HTML parts are quite wasteful, but you may
not be able to accept the risks of the removal code making a mistake. Performing an
action_rebuil d() on all inbound E-Mail is a handy way to ensure that your mail clients receive
only E-Mail that conforms to standard MIME, even if the sender is using a broken client to generate the
E-Mail. This can help foil some exploits that rely on using oddball MIME constructs to trigger software
errors.

If, by now, you haven't rejected, TEMPFAILed, discarded or otherwise ditched the message,
then when this function exits, the E-Mail will move to the next step in delivery.

Summary

Spammers are narcissistic leeches. They can't send their junk from an IP address space they own;
it'll be rapidly blacklisted and they'll have to keep changing IPs. So they hijack botted Windows PCs
with broadband connections and steal the bandwidth and processing power of others to spew their
garbage. Then they steal your bandwidth, CPU and disk trying to hammer that garbage through your
defenses and fill up your user's mailboxes.

Don't let them.
Use the tools and techniques presented here, and/or from elsewhere around the 'Net, to identify
spammers the moment they connect. Reject their obviously fraudulent E-Mail as early as possible in the

SMTP conversation: the sooner you do it, the less they get to leech from you.

Reject early, reject often.

Page 23 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Tips for a More Effective Anti-SPAM defense

MIMEDefang

1) Remember dependencies: For example, MIMEDefang supports the “message quarantining” feature
added in sendmail v8.13.x. If you have an earlier version of sendmail, you should avoid any sendmail-
specific quarantine functions, such as act i on_sm quar ant i ne() . Use of the MIMEDefang
Quarantine directory, however, is independent of sendmail version.

2) Be careful with add-on software (e.g. Anomy HTML Cleaner): There are a number of add-on bits of
software for MIMEDefang, or packages that can be integrated with it via sockets (e.g. ClamAV) or an
API (e.g. SpamAssassin). Many of these are fine, but always check their provenance and currency. In
particular, the Anomy HTML Cleaner program is known to be buggy (and as a consequence,
MIMEDefang no longer recommends its use), and the Fi | e: : Scan Perl module is likewise suspect.
Make sure you're using the right tool, and the right version.

3) Don't be too clever: Anyone who's programmed for awhile has probably had the experience of writing
some code to perform a task, then going back, looking at it, and saying to themselves “I made this harder
than it has to be”. Keep your MIMEDefang filter code simple, don't let it become an over-written beast.

For example, consider fi | t er _hel o(), as presented in the sample code above. One might be tempted
to add a check for IP HEL Ostrings to make sure the IP address represented is a valid/routable IP address.
However, simply comparing that HEL Ostring against the actual IP address of the connecting host insures
that an invalid/non-routable address won't be accepted as a valid HELO. The point here is not to over-
think the problem.

4) Make sure your hardware is adequate to the task: MIMEDefang and SpamAssassin are both written in
Perl, and the MIMEDefang Multiplexor is designed to provide a pool of available slave processes to
avoid the CPU cost of starting up a new Perl process every time an E-Mail arrives. The downside is that
memory consumption can dramatically increase. At a minimum, the MIMEDefang system configuration
proposed in this paper can chew up 100MB of RAM, just for ClamAV and the MIMEDefang processes
(aka slaves). If your system can't handle it, E-Mail delivery will be delayed or even fail.

5) Understand how MIMEDefang processes are assigned by the Multiplexor: This is discussed at some
length in the documentation, but it bears repeating. Once the MIMEDefang process used to filter a given
message at a given step is done, it will be made available to the next MILTER call from sendmail, and
may be involved in a completely different step of a completely different SMTP conversation. This is
important to understand: just because a given MIMEDefang slave was used to apply
filter_begin() through filter_end() tothe last E-Mail received does not insure that the
same MIMEDefang slave will be used for those functions when the next E-Mail arrives. Thus,
preserving state information between MIMEDefang slave processes is difficult at best, and should be
considered an advanced topic (outside the scope of this paper).

Page 24 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

SpamAssassin

1) Be prepared to tweak the scoring: SpamAssassin comes with a set of default scoring rules that it uses
to grade SPAM. These rules and their scores may or may not be appropriate to your environment. You
can modify the scoring for rules by adding your own custom scoring entries to sa-mimedefang.cf. See
the SpamAssassin documentation for how to write custom scoring rules.

2) Keep it updated: SpamAssassin is a tool under active development. Spammers are also changing
tactics in their continuing attempt to flood your mail system with garbage. In the configurations
presented by this paper, SpamAssassin is the final line of defense, the trap for the “smart” spammer who
has managed to evade detection earlier in the process. Keeping SpamAssassin up to date maintains the
integrity of that final defensive line.

3) Pay attention to score reports on SPAM that leaks through: Depending on how you code your filter,
you can have SpamAssassin score reports added to E-Mails. These score reports will tell you what tests
scored a “hit” and how many points were scored by the test. If you begin to see SPAM leaking through
that consistently triggers a particular test (or tests), you can increase the probability of the E-Mail being
tagged appropriately by adding a custom scoring rule, as in 1) above. But you have to pay attention to
what leaks through. This is a sort of “manual Bayesian learning” - which is not to say that you shouldn't
implement SpamAssassin's automatic Bayesian functions (a topic outside the scope of this paper), but
this method can sometimes generate better results in the short term.

ClamAV

1) Use freshclam: Not directly a part of your anti-SPAM defenses, the freshclam component of the
ClamAV system is a daemon that checks for updates to the clamd virus signature database. Keeping
your signatures fresh is an important part of maintaining your anti-virus system.

2) Keep the code updated: The ClamAV system is under active development, and new versions have
(historically) been released every 45 to 60 days. Consider subscribing to the ClamAV Announcements
mailing list™ for notifications.

sendmail

1) Upgrading sendmail means rebuilding/upgrading MIMEDefang: MIMEDefang's executables link
against sendmail's libmilter library. If you upgrade sendmail, you should re-compile/re-link
MIMEDefang, or oddball errors may occur’.

2) Don't forget sendmail's defenses: In my paper Practical Modern sendmail Configuration, I
present a sendmail configuration that includes a number of anti-SPAM features, including using macros
such as conf BAD_RCPT_THROTTLE, conf CONNECTI ON_RATE_THROTTLE,

conf MAX_RCPTS_PER MESSAGE, conf PRI VACY_FLAGS, and a number of conf TO_* (timeout)

Page 25 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

macros. The configuration is also MIMEDefang-friendly. These sendmail options are very useful in
combating SPAM, and the timeout settings, in particular, help prevent misuse of your mail relay's
resources.

Generally

1) Write your start/stop scripts properly: As has been noted, the software configurations presented in this
paper create an interdependent system. The clamd socket must exist, or MIMEDefang will be unable to
start. The MIMEDefang sockets must exist, or sendmail will be unable to start. SpamAssassin operates
as part of MIMEDefang, and so receives special dispensation.

Your system start/stop scripts should account for this, both in their timing and operation. clamd should
not be stopped while MIMEDefang is still running, and sendmail shouldn't start unless MIMEDefang is
already running. Consider coding the start/stop scripts for these tools to check for the PID files/numbers
of the daemons upon which they are dependent.

2) Pay attention to your logs: Make sure the system is working the way you planned. MIMEDefang, in
particular, can generate prodigious logging output, which is very useful for making sure that the filter
works the way you intended. You don't want to find out you've been silently discarding every E-Mail sent
by the high-profile customer to your corporate CEO after it's been going on for a week.

Helpful Reference Materials

This sample sa-mimedefang.conf file shows how to code a MIMEDefang-specific SpamAssassin
configuration:

BHHABHBHHBHHHHBHHBH BB BB B R B R R R R R

[pat h/ t o/ m nedef ang/ conf / sa- mi medef ang. cf

#

SpamAssassin configuration file for invocation by M MEDef ang
#

Change Log:

Who \When What

#

#

HERHHHHH T H R
Sanpl e Formats:

required_hits n
(how nany hits are required to tag a nmail as spam)

score SYMBCLI C_TEST_NAME n
(if this is omtted, 1 is used as a default score.
Set the score to O to ignore the test.)

starts a conment, whitespace is not significant.

HFHHFEHHFEHHHHFR

Page 26 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

NOTE! In conjunction with M MEDefang, SpamAssassin can *NOT* make any

changes to the nmessage header or body. Any SpamAssassin settings that

relate to changing the nessage will have *NO EFFECT* when used from

M MeDef ang. Instead, use the various M MeEDefang Perl functions if you

need to alter the nmessage.

HHHBHHHHH B HH R

BHABHBHHBHHHHBHH B H BB B R BB B R R R R R R R R

Spam score threshold (below this and SpanAssassin will not report that
the E-Mail is SPAM however, a report will still be returned)
required _hits 10

Whitelist and bl acklist addresses are *not* patterns; they're just nornmal
strings. one exception is that "*@sp.cont is allowed. They should be in
|l ower-case. You can either add nultiple addresses on one |ine,

whi t espace-separated, or you can use nultiple lines.

#

#EXAMPLE: whitelist _from nont y@ oscom com

Add your blacklist entries in the same format. .

#EXAMPLE: bl acklist_from friend@ublic.com

bl acklist_from *@pt onl i ne. com

Mail using | anguages used in these country codes will not be marked
as being possibly spamin a foreign | anguage.

ok | ocal es en

By default, the subject |lines of suspected spamw || be tagged.

This can be di sabl ed here, and should be when SA is invoked via M
rewite_subject 0O

By default, spamassassin will include its report in the body

of suspected spam Enabling this causes the report to go in the

headers instead. Using 'use_terse_ report' for this is recomended.
report header 1

By default, SpamAssassin uses a fairly long report fornmat.

Enabling this uses a shorter format that includes information
wi t hout | engthy expl anations

use terse_report O

By default, spanmmssassin wll change the Content-type: header of
suspected spamto "text/plain". Since changes nmade by SA do not
propagate back through MD, set this to O.

defang nine 0

By default, SpamAssassin will run RBL checks. If you inplenent
RBL checks in MD, set this to 1
ski p_rbl _checks 1

Disabl e Distributed Checksum
use_dcc O

Disable Pryzor
use_pyzor 0

Page 27 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Di sabl e Razor?2
use_razor2 0O

Define internal hosts as trusted
trusted networks 127.0.0.1

Di sabl e DNS support
dns_avail abl e no

Auto-whitelisting database
#auto_whitelist_path /path/to/sal/db

Bayesi an dat abase settings
#bayes_path /path/to/sal/db
#l ock_net hod fl ock

HHHH R AR HHHHHHHHHHHHHHHH R

Add your own custoni sed scores for sonme tests below The default scores are
read fromthe installed "spamassassin.cf" file, but you can override them

here. To see the list of tests and their default scores, go to

http://spamassassin.taint.org/tests. htn

HHHHHHHHH AR R R R R R R R R R R R R R R R R R

HERHHHHH TR H T
End of sa-m nmedefang. cf
HERHHHHH T H T

Next, a simple yet effective mimedefang-filter file is available via the website associated with this
paper™. As you look at it, you may note it does not employ some of the more-sophisticated possible
functions, such as SPF record checks, greylisting, SpamAssassin Bayesian learning, or a mechanism for
per-address SPAM score limits. These omissions are deliberate, as the purpose is to demonstrate, not
implement all possible functionality. Also, its functions are deliberate variations on the sample code
presented earlier in this paper — the goal being to show different possible approaches, rather than to
repeat a single approach.

Finally, the following simple script is helpful in MIMEDefang administration, and allows you to
quickly check the “sanity”, or syntactical correctness, of your mimedefang-filter file. It will not detect
logic errors or program design mistakes, it merely makes sure that your filter file is “legal” Perl.

#!/ pat h/ t o/ bash

#

[pat h/to/ m nedefang/ conf/sanity. sh

#

Sanity-check for minedefang-filter file

#

Returns O if filter is broken, 1 if filter is OK

echo ' '

echo " Sani ty-checki ng / pat h/to/ m nedef ang/ conf/ m nedefang-filter..."

test 123="/path/to/ perl /path/to/ m medefang/bin/ m nmedefang. pl -test"
echo " .. $test123"

Page 28 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

chk="echo $test123 | grep -c "syntactically correct"’
echo '

exit $chk

End of script

Footnotes

[11http://ww. crn.com security/ 197008347

[2] http://ww. i nformati onweek. com showArticle.jhtm ?articl el D=197001430
[Blhttp://ww. itw re.com content/view 15221/ 53/

[4] Within the scope of this paper, “effective” is defined as having a minimum of false-positives (e.g. legitimate E-
mail being tagged as SPAM) while stopping the vast majority of actual SPAM. In this context, “effective” doesn’t
mean “perfect”. Some SPAM is expected to leak through, while an occasional “legitimate” message may be
erroneously flagged or dropped.

[SThttp://ww. ef f.org/ wp/ ?f=SpantCol | at er al Darmage. ht m

[6]http://ww. m medef ang. org

[71htt p:// spanassassi n. apache. org

[81http://ww. cl amav. net

[Olhttp://ww. sendmai |l . org

[10] htt p: // www. sendrai | . or g/ doc/ sendnai | -current/Iibm|ter/docs
[I11http://ww. sendmai | . org/ doc/ sendmai |l -current/Ilibm | ter/ READVE

[121htt p://razor. sour cef or ge. net

[13]http://wwv. rhyolite.con anti-spam dcc

[141http://pyzor. sourcef orge. net

[15Thttp://www. milter.org

[16]1htt p: // spanbayes. sour cef orge. net/

[17] Within the MIMEDefang community, there is some contention as to if it is more efficient to run
SpamAssassin as its own daemon, using the spamc/spamd interface; or as an integrated component of
MIMEDefang (as described in the MIMEDefang installation documentation). Materials available through the
MIMEDefang website and wiki describe how to implement the alternative (spamd) configuration. The topic is
considered outside the scope of this paper; however, without getting into the pros and cons, if you already have
spamd running as a daemon, consider that alternative configuration for your environment.

[18]1http://ww. postfix.org

[19] As of sendmail v8.14.0, sendmail offers some filtering of HEL Ostrings, including the ability to reject some
obviously fraudulent strings; however, the MIMEDefang configurations presented in this paper are more flexible,
and arguably much more effective, than sendmail's built-in capabilities.

[20] Another approach would be to use a data source, such as LDAP, for either sendmail or MIMEDefang to
consult at this step. A perfectly viable idea, it's also outside of the scope of this paper.

[21] In order for such logs to be recorded, you must appropriately configure the syslogd daemon.
[22]1http://1ists.clamav. net/mail man/1i stinfo/clamav-announce
[23]http://1ists.roaringpenguin.com pi pernail/ m medef ang/ 2006- Jul y/ 030684. ht m

[24] htt p: // dave. tri angl enug. org

[25] http:// dave. triangl enug. or g/ mi medefang-filter. paper

Page 29 of 30

Defense in Depth: Anti-SPAM for sendmail Environments © 2006-2007 David Bank

Change Log

Version Date Change

0.50 2006-Jul-11 Initial creation

1.00 2006-Aug-12 Published (PDF only)

1.01 2006-Aug-13 Fixed minor typos

1.20 2007-Jan-09 Minor edits; corrected Perl code; updated versions of
softwares referenced

1.25 2007-Jan-12 Fixed minor typos; added information about logging

1.26 2007-Mar-20 Created HTML version (not published)

1.30 2007-Mar-23 Added SpamBayes; fixed minor Perl bug; updated versions
of software referenced; minor edits; reconciled with
HTML version (both published)

1.35 2007-Apr-26 Revised “Philosophy” section; many minor text edits;
updated ClamAV version; formatting changes

1.36 2007-May-03 Minor typo and formatting fixes

1.37 2007-May-13 Minor change to “Philosophy” section

1.40 2007-Jun-04 Updated software versions

1.50 2007-Nov-11 Updated software versions; added article citations for

SPAM statistics

Page 30 of 30

