Controlled Privilege Escalation in Linux/UNIX
Environments

by David Bank CCNA, CNE, CCSE, CNA
v1.50 (2007-Jul-18)
© 2006-2007 David Bank

Why is there a need for controlled privilege escalation?

The Linux/UNIX environment tends to classify users in two ways:

* root - infinite, cosmic power
* Everyone else - very little control of anything they don't own

Many system tasks, such as starting a process that binds to a port number of 1024 or less, or
stopping a process running under a different UID, require root privilege. Typically, these tasks can only
be done by someone able to login as root, or someone who knows the root password and invokes the su
utility to escalate their privilege.

The trouble with those methods is that the person performing those tasks must know the root
password. The escalation of their privilege level is complete and unrestricted, which means that they can
do anything, not just specific tasks. It’s also impossible to effectively log or audit actions taken.

A better solution is a privilege escalation technique that controls both the escalation and to what
commands/programs it applies. An excellent tool to do this is GratiSoft's sudo'".

Using sudo, a system administrator could allow certain users to invoke processes that require
privilege - for example, a trusted user might be allowed to reconfigure and restart an Apache webserver,
or a "guest" admin might be empowered to restart the entire system. But neither one could perform the
task allowed the other. Perhaps most importantly, such operations can be securely logged.

sudo vs. Solaris RBAC

In Solaris 8, Sun introduced Role-Based Access Control, and it provides much of the same
functionality as sudo™. So, if you have Solaris in your environment, which tool should you use?

The chief advantages of Solaris RBAC are tight integration with NIS/NIS+, and arguably better
support for Solaris Zones and Process Contracts (sudo added support for Solaris Process Contracts in
v1.6.9). However, Solaris RBAC tends to be more-complex to configure and manage than sudo.

What is the answer to the question? In the heterogeneous environment, sudo shines; in a Solaris-
dominant environment, however, RBAC may be as good as or even better a secure privilege escalation
tool as sudo. In any environment having a substantial Solaris host population, RBAC should be seriously
considered.

Page 1 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

A sudo How-To

sudo is a Free/Open-Source Software (FOSS) package. Many modern Linux/UNIX distributions
include a pre-built sudo or have sites where you can download installable packages. sudo is a package
that I prefer to build from source, so this paper covers those steps.

Why Not Packages?

Common practice in the Linux/UNIX world is to install pre-built packages, usually provided by
the platform vendor or distribution maintainer, rather than to build from source. Where a package is not
part of the "official" offerring, it is often available from a 3™ party (e.g. the package author, a site like
SunFreeware", or other independent repository). Practically every modern Linux/UNIX distributions
include a pre-built sudo.

Why, then, does this paper take the build from source approach?

When using a pre-built package, one must accept whatever compile-time configuration decisions
were made by the package creator. These parameters may or may not be adjustable at run-time, and
compile-time options selected by the package creator may or may not be appropriate to a specific
environment. Building from source allows tailoring the software. As with any other system
administration decision, weigh the factors in the environment and choose a course of action.

If you decide to use a pre-built package, skip past the Compilation and Installation sections - start
reading at the Configuration section. You should follow the package installation documentation, and
reference this paper for configuration tips. The current version, as of this writing, is sudo v1.6.9.

Standards and Assumptions

This paper's assumptions, for those wishing to build from source, include the use of a modern
Linux or UNIX (or UNIX-like) operating system, the ability to run shell scripts, compile C code (with
GNU gcc or an equivalent), copy and/or link files, and set file modes and ownership. While some of
these tasks require root privilege, you should only invoke that when you specifically need it (for
example, most compilation steps can probably be accomplished as an unprivileged user).

Every system admin has their own way of doing things, and their own sense of where to put files.
This paper is written from my perspective on these issues, which may be different from the maintainers
of the pre-built packages. Select whatever file location scheme for this tool that is appropriate to your
environment, and if necessary translate my paths and locations into the scheme you select.

My personal environment is usually either SLES v9 (or later) with gee v3.3.3 (or later), RHEL
v4 (or later) or gee v3.4.6 (or later) or Sun Solaris v8 (or later) with gee v3.3.2 (or later). Other tools

Page 2 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

common to both include make v3.8x and nano v2.0.x. I tend to use the stock development tools such as
Id, ar, yacc and lex. I also tend to create a sub-directory structure specifically for building add-on tools,
generally /work. Make sure the partition where this is located has adequate room.

I usually install add-on tools, like sudo, in a sub-directory off of /opt, and then use symbolic
links in /usr/bin or wherever else might be needed. This allows me to control access better than if
everything is dumped in /usr/local. 1 prefer symbolic links because I frequently make /opt its own
partition, and I can "snap-in" a newer version of a tool with a few mv commands, since the link is merely
a pointer to a path and file name (a hard link is another inode entry and can't cross partition boundaries).

What About Deployment Tool/Technique X?

Administrators accustomed to working in a homogeneous environment may wonder why this
paper does not mention or advocate the use of specific tools for deployment beyond a single machine, or
uses techniques that might seem problematic when viewed from a specific environment perspective. A
reader might find themselves thinking “Why not just use <insert tool name here>?7" or “That suggestion
doesn't make sense in <insert specific environment name here>!”

This paper is deliberately written for a generic audience, where a reader may be interested in
applying the information presented in diverse environments, perhaps other than a typical Linux
distribution or common UNIX variant. As a consequence, it offers ideas culled from a number of
environments. The reader is encouraged to consider those ideas, techniques and tools that are applicable
to their situation, and to ignore those that are not.

Download and unpack the source

However might be appropriate for your environment, download the latest sudo source package. I
download mine into /work/sudo:

me@ost /work 2 $ dir

drwx------ 2 me wheel 512 Jul 17 23:32 sudo/

nme@ost /work 3 $ cd sudo

me@ost /work/sudo 4 $ dir

STWe-- - - 1 me wheel 557692 Jul 17 19:47 sudo-1.6.9.tar.gz

If your tar program includes the ability to decompress gzip-ed files, then you can use it directly,
or you can call gzip as a separate step on the way to un-taring the file. Here, I'm showing the latter
method, and writing three commands separated by semi-colons:

ne@ost /work/sudo 5 $ gzip -dv *.gz ; tar -xvf*.tar ; gzip -v9 *.tar

Page 3 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

The commands will decompress the file, unpack the tarfile, then recompress the tarfile using the
best compression offered by gzip. No sense wasting disk space leaving the uncompressed tarfile around.
If you have it handy, substitute bzip2 for gzip — the compression results tend to be better'*.

The source files now reside in a directory named very similar to the file from which everything
was extracted. If you, like me, use the autocompletion capability of your shell, this can be annoying. So I
usually change the directory name to something short:

nme@ost /work/sudo 9 $ nv sudo-1.6.9 V1.6.9

me@ost /work/sudo 10 $ dir

STWe-- - - 1 me wheel 557692 Jul 17 19:47 sudo-1.6.9.tar.gz
STWX------ 1 me wheel 512 Jul 17 19:47 V1.6.9/

Now autocompletion won't beep at me. I can get ready for the next step with:

me@ost /work/sudo 11 $ cd V*
me@ost /work/sudo/V1.6.9 12 $

Compilation

Helpfully, sudo uses the ubiquitous GNU autoconf configuration tool. The script configure will
automatically examine your system, check dependencies, and prepare sudo to be compiled with a built-
in set of defaults.

However, an advantage of building from source is the opportunity to tweak things a bit. For
example, the default location of the sudo binary is /usr/local, and as I noted above, 1 prefer /opt/sudo.
You can see all the possible configuration options, and their defaults, with the "--help" parameter:

nme@ost /work/sudo/V1.6.9 13 $./configure --help

This will show you a lot of information, but won't actually configure or compile anything. What
you might change from the defaults is largely dependent on your preferences and standards in your
environment.

I like to change a number of the defaults, which I can do from the command-line when I invoke
the configure script:

ne@ost /work/sudo/V1.6.9 14 $./configure --prefix=/opt/sudo \
--sysconfdir=/opt/sudo/conf --wth-umask=077 \
--with-mailto=< ny standard address > --disabl e-root-sudo
--wWith-editor=/usr/bin/rnano:/sbin/vi --with-env-editor \
--with_l oggi ng=sysl og --with-1ogfac=local 0 \
--wW th-goodpri=notice --with-badpri=alert --wth-ignore-dot

Page 4 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

Why these particular options and settings? Glad you asked that:

--prefix=/opt/sudo
See my previous discussion about file locations.

--sysconfdi r=/ opt/ sudo/ conf
Without this, the location of the sudoers configuration file would be in
/opt/sudo/etc. As time-honored as /etc is, | prefer the more-descriptive /conf.

- -umask=077
Normally, the environment spawned by sudo can inherit the UMASK of the user
environment in existence at the time sudo was invoked. And that UMASK could
be anything. I prefer to force the UMASK of all sudo-spawned environments to
the very restrictive 077.

--wWith-nailto=< ny standard address >
In its configuration, sudo can be set up to send an E-Mail when certain suspicious
events occur, such as an unauthorized account trying to use sudo, or an authorized
account trying to access an unauthorized command. If you use this option,
substitute an appropriate E-Mail address for < my standard address >, and be sure
to check that it routes properly.

- -di sabl e-r oot - sudo
I have a hard time imagining why root would need to run sudo in most
environments. My general goal with sudo is to get as close as possible to
obviating the root account.

--w t h-edi tor=/usr/bin/rnano:/sbin/vi
If you don't specify editors, then on most platforms you get stuck using vi. Yes, vi
is the One True Editor, but it’s also a pain. I like nano as a nice middle ground
between the rich world of emacs and the terse obtuseness of vi. Helpfully, nano
has a restricted invocation mode (rnano) that overrides the configuration files,
disables suspension or shell escape, and sharply limits file operations”’. sudo will
use the first editor listed that exists, but this can be modified with the next option.

--w t h-env-editor
This option allows sudo to honor the $EDITOR and $VISUAL environment
variables, subject to further configuration in the sudoers file. It is important to
only use this option in conjunction with the previous one, as allowing sudo to
honor any value in those variables can create a security hole.

Page 5 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

--w t h-1 oggi ng=sysl og
Using this option instructs sudo to log its events to the standard syslog interface.
The next three options further configure this.

--wi th-1ogfac=l ocal 0
With this, sudo will use Facility LOCALOQ when writing to syslogd. Linux
admins may prefer AUTHPRIV, although most Linux-based OpenSSH
configurations for sshd log to AUTHPRIYV and you may not want to mix them.

--Wwi th-goodpri=notice
This option tells sudo to use Priority NOTICE when writing "routine” messages
to syslogd. An example would be a notification that an authorized user has run an
authorized command. Any valid Priority may be used.

--W t h-badpri=al ert
Opposite the previous option, this option instructs sudo to use Priority ALERT
when writing to syslogd for "abnormal" events, such as an unauthorized user
trying to use sudo, or an authorized user trying to run a command they are not
allowed. Any valid Priority may be used.

--w th-ignore-dot
A very important option, this tells sudo to ignore any . in $PATH variables. There
shouldn't be any of those in $PATH variables, but if there are, sudo will ignore
them.

At this point, the configure script should have been run, with any options you wanted. For the
purposes of this paper, the assumption is made that it ran to completion without any errors. If it had
problems, you need to fix them and re-run configure. Among other things, configure will generate
Makefile in the same directory, and this is used for the rest of the process.

You're now ready to compile sudo:
me@ost /work/sudo/V1.6.9 21 $ make

This starts the compilation process. Troubleshooting compilation issues is outside the scope of
this paper, and again the assumption is made that sudo has been successfully compiled and you are ready
to proceed to the next stage.

Installation and Configuration

If you've gotten to this point without any problems, the rest of the process should be equally
trouble-free. To actually install the program files, you need to have root privilege because, among other

Page 6 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

things, you'll be setting SUID bits in file modes, and usually only roof can do that. So, invoke su:
me@ost /work/sudo/V1.6.9 25 $ su

Now that you are privileged, install the program:
make install

Again, troubleshooting installation error messages are outside the scope of this paper. You'll just
have to look at the message(s) and figure it out for yourself. If there are no errors, it’s a good idea to
check the results, which should look like this:

#1s -la /opt

drwxr-xr-x 7 root other 512 Jul 17 21:04 sudo/

#1s -la /opt/sudo/bin

---S--X--X 2 root root 110488 Jul 17 21:04 sudo*
---S--X--X 2 root root 110488 Jul 17 21:04 sudoedit?*

1s -la /opt/sudo/shbin

---X--X--X 1 root root 75816 Jul 17 21:04 vi sudo*

1s -la /opt/sudo/conf

“r--r----- 1 root root 4193 Jul 17 21:04 sudoers

1s -la /opt/sudo/libexec

-rwr--r-- 1 root other 2768 Jul 17 21:04 sudo_noexec. a
STW-- - 1 root other 804 Jul 17 21:04 sudo_noexec.la
- FWX------ 1 root other 8088 Jul 17 21:04 sudo_noexec. so*
1s -la /opt/sudo/ man

drwxr-xr-x 2 root other 512 Jul 17 21:04 nmanlm
drwxr-xr-x 2 root other 512 Jul 17 21: 04 man4/

1s -la /opt/sudo/ man/ manlim

-r--r--r-- 2 root root 25830 Jul 17 21:04 sudo.1m
-r--r--r-- 2 root root 25830 Jul 17 21:04 sudoedit.1m
-r--r--r-- 1 root root 12099 Jul 17 21:04 visudo.1m

1s -la /opt/sudo/ nan4

-r--r--r-- 1 root root 57562 Jul 17 21:04 sudoers.4

Your primary concern should be checking the ownership and modes. Most important are the
SUID bits on the sudo and sudoedit executables.

If everything is correct, and you've installed sudo into a location not normally in your $SPATH
(like /opt/sudo), then you'll probably want to link the files to /usr/bin or wherever is appropriate, like so:

In -s /opt/sudo/ bin/sudo /usr/bin/sudo

In -s /opt/sudo/bin/sudoedit /usr/bin/sudoedit

In -s /opt/sudo/sbin/visudo /usr/sbhin/visudo

-s /opt/sudo/ man/ manlnf sudo. 1m / usr/ shar e/ man/ manlnf sudo. 1m

In -s /opt/sudo/ man/ manlnf sudoedit.1m /usr/share/ man/ manlm sudoedit. 1m
In -s /opt/sudo/ man/ manlnt vi sudo. 1m /usr/ shar e/ man/ manlni vi sudo. 1m

In -s /opt/sudo/ man/ man4/ sudoers. 4 /usr/ share/ man/ man4/ sudoers. 4

HHHHFHHFH
S

Page 7 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

The appropriate links/paths for your environment may be different.

Finally, you want to edit to the sudoers configuration file. The file installed by default is quite
sparse, and also not well documented. There are probably a number of things you want to do, but at the
very least, give your usual unprivileged account the ability to edit sudoers. You're still privileged, so
simply:

nano /opt/sudo/ conf/sudoers

The Reference section has a sample sudoers file that is a little better documented.

Exit the root shell:

exit
nme@ost /work/sudo/V1.6.9 26 $ which sudo
/usr/ bi n/ sudo

Congratulations, sudo is now installed.

Tips for using sudo effectively

1) Keep sudo updated: Common advice for sysadmins is to keep your systems patched and your add-on
programs updated. However, that advice is especially applicable to a tool like sudo. Bookmark the sudo
website and check it regularly for updates and bug notifications, or subscribe to the sudo announcements
mailing list'®!, If you use a pre-built package, then still check the sudo site for updates so you know when
to check with the package maintainer. The point is not to be passive — proactively keep up with changes
to sudo.

2) Don’t be deceived by simplicity: sudo is powerful, but when you get down to it, it’s a fairly simple
tool. Don't let its simplicity deceive you into being careless in its configuration.

3) Locate sudo appropriately: If you put sudo somewhere other than /usr/local, in a subdirectory
structure to which you can control access (I'll stick with my example of /opt/sudo), then you can easily
restrict filesystem access to sudo to those accounts that can legitimately use it. For example, let's say that
you create the group cansudo in /etc/group, and put everyone who can legitimately use sudo in that
group (this is independent of whether or not you leverage the group in your sudoers file). You can set the
ownership of /opt/sudo to root:cansudo with mode 750. Anyone not in cansudo is now blocked from the
entire subdirectory structure. They can't even read the man pages. A side effect is that even if someone is
listed in the sudoers file as a legitimate user of sudo, they won't be able to actually use it without being
in cansudo."”

Page 8 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

4) Leverage the simplicity: The heart and soul of sudo is the sudoers file. If you take the time to write
the file well, then a single “standard” file can be distributed across multiple systems, even multiple
OSes/architectures. Subsequently, changes across multiple hosts can be accomplished with tools like sed,
the standard content of the sudoers file enabling you to script changes.

5) Use filesystem options: If your environment is such that you can make use of the nosuid option when
mounting filesystems, then putting sudo in /opt (or under /usr) might not be the best idea. Consider
having a partition specifically for SUID programs like sudo, and mounting /opt (which I tend to use for
other tools as well) with the nosuid option. This helps segregate programs that use the security-
problematic SUID bit into their own filesystem, and allows you to mount other filesystems without
SUID support. If you are able to make your filesystem environment this granular, then also consider
mounting the partition where sudo is kept as read-only.

6) Use extra caution with scripts and sudo: Be very careful, if not downright paranoid, about using sudo
in conjunction with shell scripts, such as start/stop scripts commonly found in /etc/init.d or similar
locations. Insure that such scripts are owned by root and are mode 755, 750, or more restrictive. The
danger here is that if an otherwise unprivileged user can edit a script available for execution with sudo,
then they can execute any command at the privilege level afforded by sudo. For example, consider an
environment with an application, located in /opt/someapp, where the app’s daemon is controlled with the
script /opt/someapp/bin/control.sh, which is available to be run as root using sudo. User bob is the app
“owner” with unprivileged shell access. If bob can edit the control script, then he can easily insert a
statement into the script, and it will be executed as root. One pernicious act might be to code a small sed
statement that changed Bob’s UID to 0, making the bob account a root-equivalent account.

7) sudoers can override compile-time options: Be aware that entries in sudoers can override any
compile-time options you set, including the ones presented in this paper'.. If you compile from source,
then you are, of course, free to edit the source code so that the configuration file parser ignores entries
you don't want overridden. More practically, this is simply something to keep in mind when constructing
your sudoers file.

Important!

Never configure sudo to allow execution, as root, of a script (or other
program file) that is editable/writable by an unprivileged user.
Additionally, it is dangerous to allow execution of shell-escape-enabled
programs, such as editors, through sudo. Only do so when necessary, and
then only with strict limits (preferably further enforced by the program).

Page 9 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

Helpful reference materials

The sample sudoers file included in with the program is a bare-bones framework, and not all that well
documented. Here is a documented template that is most-apropos for Solaris, but is easily adapted for
other platforms (modify the various Cmd_Al i as entries):

BHHBHBHHBHBHHBHHBH B HBH BB R H BB B R B R R R

[/ opt/sudo/ conf/sudoers: sudo perm ssions file

#

Change Log:

Who Wen What
o
#

#

HHHHBHHH B H B H R H R H R

User alias specification

HARHHH B R AHHH R R RS H SRR R H R R

Defines shorthand nanmes for users and groups using nanes

from/etc/passwd and /etc/group

Format: User_Alias <sudo alias> = <group in /etc/groups or user>
##t

User Alias ADM NS = not r oot

HHBHHH B R T H SR A HHH R R HPH R R R 7R
Runas alias specification
HERHHHHH
Defines shorthand nanmes for |Ds under which sudo'd prograns

Wi Il run; uses nanes from/etc/passwd, and default is "root"
("OVERLORD' is therefore redundant, but shown for the sake
explicitness)

Format: RunAs_Alias <sudo alias> = <user in /etc/passwd>

##t

Runas_Al i as OVERLORD = r oot

HHHHBHHH B H B H B H B H R

Host alias specification

HHBHHH B R AHH R B HTH SRR H R R

Defines a shorthand for the hosts on which comands can be

run. Runni ng conmmands on ot her hosts would required rsh

functionality, which is often the first thing adm ns disable

Format: Host Alias <sudo alias> = <host's fully-qualified donain nane>
##t

Host _Ali as HOST = host.domain.tld

Page 10 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

HARHHH B R AHHH R R RHH SRR R R

Cmd alias specification

HHHHBHHH B H B H R

Defines shorthand specs for vari ous conmands

Format: Cmd_Alias <sudo alias> = <full path specification of progranr

Command necessary to make/restore backups and operate tape drive

Cmd_Alias TAPE = /usr/sbin/ufsdunp, /usr/sbin/ufsrestore, \
[usr/bin/nt

System shut down command

Chmd_Ali as SHUTDOWN = /usr/ sbi n/ shut down

Process kill comand

Cmd_Ali as KILL = /usr/bin/kill

Super-user comrand
Cmd_Ali as SU = /usr/bin/su

Editor for this file

Cmd_Ali as SUEDI T = /sbin/visudo

sysl ogd managenent
Cmd_Alias SYSLOG = /etc/init.d/syslog, /usr/sbin/syslogd

HHHH RS R R R R
Override builtin defaults
G G e S e e it o]

Formats:

Defaul ts<:optional list of users> [whitespace] <option>
Hit

Turn off sudo's "lecture" for sel ected people

#Def aul t s: ADM NS Il ecture

Def aul ts: r oot I'l ecture

Enabl e visudo to honor the EDI TOR environment vari abl e
Defaul ts env_editor

B e e
User specification
HHHHHHHHHH R B R HHH R R R
Definitions of who can do what

Format :

User Alias = (RunAs_Alias) Cmd_Alias [, Cmd_Alias]
Hit

Staff nmay run "visudo”

ADM NS HOST = (OVERLORD) SUEDI T

Staff nay nmake/restore backups (as root)
ADM NS HOST = (OVERLORD) TAPE

Staff nay stop/start syslog (as root)
ADM NS HOST = (OVERLORD) SYSLOG

Page 11 of 13

© 2006-2007 by David Bank Controlled Privilege Escalation in Linux/UNIX Environments

Staff may issue kill or shutdown conmands
ADM NS HOST = (OVERLORD) KILL, SHUTDOMN

Staff nay change any password except for that of root

ADM NS HOST = /usr/bin/passwd [A-z]*, !/usr/bin/passwd root
HHRHHH BB HPH TR R R R R RH

End / opt/sudo/ conf/sudoers

HERHHHHH TP

This simple shell script automates running the configure script with the options suggested in this paper:

#!/usr/bin/sh

#

./configure --prefix=/opt/sudo --sysconfdir=/opt/sudo/conf \
--W th-umask=077 --with-mailto=< ny standard address > \
--di sabl e-root-sudo --wi th-editor=/usr/bin/rnano:/sbin/vi \
--wWith-env-editor --wth_| oggi ng=syslog --wth-1ogfac=local 0 \
--wW th-goodpri=notice --with-badpri=alert --wth-ignore-dot

Footnotes

[1] http:// www. sudo. ws/ sudo

[2] See Ross Oliver's helpful SysAdmin Magazine article
http://ww. samag. com’ docunent s/ s=7667/ san0213c/ 0213c. ht m

[3] http:// waw. sunfreeware. com

[4] As of Solaris v9, Sun has included bzip2 as well as gzip. Both are typically found in most modern
Linux distributions as well.

[5] http://ww. nano- edi t or. or g/

[6] http://waww. sudo. ws/ mai | man/ | i sti nfo/ sudo-announce

[7] There are, of course, ways around such a limitation. In particular, a skilled attacker with local shell
access may be able to gain the necessary group membership. However, this technique can foil remote
attacks made without local shell access, and will certainly discourage the casual “noodler”.

[8] I personally disagree with this "feature” - if I'm going to bother setting a compile-time option, it
shouldn't be so easily overridden.

Change Log
Version Date Change
1.00 2006-Jan-19 Initial creation
1.05 2006-Mar-31 Fixed typos; minor formatting edits; documented changes
1.10 2006-Apr-11 Added more tips; more minor formatting edits
1.15 2006-May-09 Added more tips; corrected minor typos and formatting
1.20 2006-May-11 Clarified references to the nano editor (version/mode)
1.21 2006-May-17 Clarified that the configuration file can override

Page 12 0of 13

© 2006-2007 by David Bank

1.22
1.25
1.30
1.40
1.41

1.45

1.46
1.47
1.48
1.50

1.70

2006-May-23
2006-Jun-16
2006-Jun-17
2007-Jan-09
2007-Jan-10

2007-Apr-25

2007-May-03
2007-May-05
2007-May-13
2007-Jul-18

2007-Dec-15

Controlled Privilege Escalation in Linux/UNIX Environments

compile-time options

Minor formatting changes

Minor formatting changes

Reconciled with HTML version; added Footnotes

Minor updates and formatting changes

Added Footnote for nano; clarified that the sample
sudoers file is derived from a Solaris environment

Added information about Solaris RBAC and inclusion of
bzip2 in Solaris 9; minor updates and formatting
changes; revised Tip 4 to be more practical; updated
nano version

Minor text and formatting changes

Updated development environment info; minor typo fixes

Minor text changes

Updated for sudo v1.6.9; fixed copyright statement;
updated link to sudo website; added reference to
announcements mailing list; re-ordered Footnotes;
recomposed section on Solaris RBAC; updated
screen capture texts

Minor text changes; fixed Footnotes; sync version number

End of Document
© 2006-2007 David Bank

Page 13 0f 13

