Probing System Hardware in Linux

by David Bank RHCT, CNE, CCSE, CCNA

v1.00 (2011-Jan-14)
© 2010-2011 David Bank

Scope and Focus

The topic of this paper is OS-level coding (using shell scripts and Linux-typical
executables) to analyze and quantify hardware (whether physical or virtual) underlying a Linux
server (e.g. hardware common to a data center, as opposed to desktops). Where specific
hardware vendors are mentioned, it is for the purposes of demonstrating a specific technique
— it is not possible for this paper to delve into even a fraction of the various hardware OEMs,
nor can every potential technique or tool be demonstrated. As exemplars, this paper uses
commands on a limited number of models of Gateway/eMachine, HP, IBM and Sun hardware
for physical platforms, and KVM and VMware for virtual platforms.

This paper will focus on the x86 architecture, and will also assume a GNU/Linux
distribution that is a RedHat variant (for example, Centos) or close cousin. Other distributions
may or may not not have some or all of the tools mentioned, or the tools may exist under
different names. Finally, this paper is geared towards both BASH and a 2.6 kernel
environment. As a baseline, consider this paper applicable to RHEL v4.0 Update 8 or later.

Detection vs. Analysis

Detection of hardware — that is, determining if a specific bit of hardware exists within the
system — is often easier than analysis of the hardware. For example, counting Ethernet NICs
in a host is simple; determining the operational attributes of each NIC (e.g. MAC address, link
state, efc.) takes considerably more effort.

This paper will provide tips and techniques for both tasks (detection and analysis), but
those techniques should be tested in the reader's specific environment. Results may vary
between hardware platforms (due to chipset variations) or even OS releases (as a result of
driver versions, kernel changes and/or variations in tools).

Assumptions and Requirements

In order to fully leverage the tools and techniques in this paper, you must have an
operational x86 host with a working Linux distribution already installed (or perhaps run from
LiveCD). Additionally, you must have privileged access to the host.

Finally, since the paper approaches the topic from the OS perspective, it is assumed
that the OS supports, has properly detected, and has loaded the correct driver(s) for the
hardware in the system. The tools and techniques presented are not designed to sleuth out
hardware that the OS itself has not found or does not support!".

Page 1 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

Platform

One of the most useful initial tasks for analyzing hardware is determination of whether
or not a host is virtual; and also to determine the vendor, or OEM, of the host. When looking
for a starting point?, perhaps the best, but hardly only, tool for this is dmidecode®®, which is
found in practically all Linux distributions. Note that older versions of this tool, while outputting
much the same information as newer versions, do not support the -t parameter; this paper
assumes you're using at least v2.8.

Start your hardware analysis with the command:
dmidecode -t 1 | grep Manufacturer | awk '{print $2}'

The output will be a string of variable length. The following table will help you interpret
the values:

String Notes

Gateway Seen on eMachine hardware

HP Seems to correspond to an HP/Compaq “server class” machine
Hewlett-Packard Similar to HP, but seems to be used for “desktop class” machines
IBM All IBM systems, from laptops to servers

Red Probably RedHat-delivered QEMU KVM; you can confirm this with

the command dmidecode -t 0 | grep Vendor | awk '{print $21}',
which should print the string QEMU

Sun Indicates Sun (now Oracle) x86 hardware

VMware, Note the trailing commal! This indicates a VMware guest machine

As part of interpretation, you can also see which ones are virtual platforms. Note that

only a few examples are shown — many values are possible, but it is not within the scope of
this paper to provide a definitive guide to the strings associated with each and every OEM.

Physical Host Model and Blade Slot

For physical hosts, you can usually determine the OEM's model number; if the host is
on Blade hardware, the chassis slot number may also be accessible to you.

Page 2 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

Compaa/HP Hosts: Model and Blade Slot

On HP hosts, start with:

dmidecode -t 1 | grep Product | awk '{print substr($4,1,2)}"'

If the result is Co (the full string will be Compagq), then this will confirm that the
underlying hardware is an HP “desktop class” system (such as a ProSignia). You can retrieve
the model designation using:

dmidecode -t 1 | grep Product | awk '{print $5}'

Otherwise, the result should be either BL (indicating a Blade-based host), or DL (for a
rack-mounted system). In either case, you can refine the statement to get the full model
number:

dmidecode -t 1 | grep Product | awk '{print ($4,$5)}"'

If on a Blade-based host, the slot number of the Blade in the chassis may be available
through the command:

dmidecode -t 204 | grep 'Server Bay' | awk '{print $3}'

IBM Hosts: Model and Blade Slot

When the underlying hardware is IBM, start with the command:
dmidecode -t 1 | grep Product | awk '{print $4}'
The output can be several different strings, including BladeCenter, System and xSeries
—a null string is also possible. In this last case, which seems to be applicable to pre-Lenovo
IBM laptops, the command:
dmidecode -t 1 | grep Product | awk '{print $3}'
will return the IBM “Type” in the format ###2??.
If the first command returns a string containing BladeCenter, that indicates a Blade-
based host, such as a something in an HS-20 BladeCenter. You can get the precise model
number using:

dmidecode -t 1 | grep Product | awk '{print $6}'

Also, the slot number occupied by the Blade may be accessible using:

Page 3 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

dmidecode -t 2 | grep 'Location In Chassis' | awk '{print substr($4,5,2)}"'

If the result of the very first IBM-specific command was System or xSeries, then the
underlying hardware is probably an xSeries rack-mounted system. You can obtain the model
number with:

dmidecode -t 1 | grep Product | awk '{print $6}'

In the cases where the first command did not result in a null string, the subsequent
commands will render the model number in the format ####???; additionally, the string may
contain extraneous characters on either or both sides of the model number itself. Further
string processing will be needed to render the information in IBM's standard “Type” format of
HHHE-227.

Sun x86 Hosts: Model

This paper has had the benefit of few exemplars, so this information is limited. Start
with the command:

dmidecode -t 1 | grep Product | awk '{print substr($4,1)}"'

If the resulting string is Fire, then the underlying hardware is a Sun Fire model, and you
can get the full model information using:

dmidecode -t 1 | grep Product | awk -F 'Fire' '{print $2}'
Otherwise, to glean more information, try using:
dmidecode -t 1 | grep Product | awk -F ': ' '{print $2}'

Physical and Virtual Host Serial Numbers

Compaag/HP and IBM Hardware

You should be able to extract the system's OEM-supplied serial number with the
command:
dmidecode -t 1 | grep Serial | awk '{print $3}'

Note that it is possible for the result to be a null string. Typically, that can occur when

the system's motherboard has been replaced and a serial number not assigned (a step that
usually requires an OEM engineer to accomplish).

Page 4 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

Sun Hardware

For reasons which aren't clear, dmidecode returns the motherboard serial number, not
the serial number which appears on the chassis or anywhere else. To get the serial number as
it appears in the ILOM and on the outside of the physical system box, you must use the IPMI
toolset (which is available for, if not part of the default install on, most Linux distributions). If
IPMI is running, the serial number should be retrievable using:

ipmitool fru | grep -A 6 'SYS (ID 3)' | grep 'Product Serial' | awk -F ': ' '{print $2}'

Virtualized Platforms

Virtualization platforms, such as VMware and KVM, do not offer Guest systems a “serial
number” in the same manner of physical hardware OEMs. However, virtualized systems do
have UUIDs, which can be used to much the same purpose.

To extract the UUID value on a virtual platform, use:

dmidecode -t 1 | grep UUID | awk '{print $2}'
Many physical platforms also have a UUID; whether or not they do, and what information

they contain, varies from OEM to OEM. For the purposes of this paper, those are ignored in
favor of the OEM-supplied Serial Numbert*..

Ethernet Network Interfaces

Most Linux distributions offer four tools that are useful for probing Ethernet NICs: ethtool
(which replaced mii-tool), ifconfig, Ispci and dmidecode. These are each examined below
with an eye to what information may be gleaned from them. For simplicity, the paper's examples
will concentrate on interface eth0, but the techniques should work for most interfaces®.

ethtool

The replacement for mii-tool offers a wealth of information about interfaces. Strangely,
however, there doesn't seem to be any way to reliably get the MAC address for a NIC directly
from this tool®.

To determine the link state of an interface (which will be reported as either yes or no),
use:

ethtool ethO | grep Port | awk '{print $3}'

Probing the parameters of an interface that doesn't have link can produce very odd

Page 5 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

results, so unless you're interested in something specific, determining link state is a good
place to start.

For an “active” interface (one that is administratively up — see ifconfig below), you can
determine the current link speed, duplex and transceiver type with the following commands:

ethtool ethO | grep Speed | awk '{print $2}'
ethtool ethO | grep Duplex | awk '{print $2}'

ethtool ethO | grep Port | awk '{print $2}'

There some important caveats, particularly when dealing with Blade-based hosts.
Depending on the Blade, an interface may report as having link, even when it technically does
doesn't go anywhere!”. Also, IBM Blade-based hosts may report a transceiver type of “FIBRE”,
even when the actual media is copper®®. Additional parsing of the ethtool etho output can
also (when supported) extract information concerning auto-negotiation state and capabilities,
supported transceiver types, and supported link speeds and duplex combinations.

You can usually discover the PCI device number for an interface using:
ethtool -i eth | grep bus-info | awk '{print $2}'

Finally, VMware-based hosts using the vmnics and pcnet32 driver combination will not
report any of these information items.

ifconfig

This tool is primarily meant to examine and configure interfaces for OS usage. You can
use it to count the number of Ethernet interfaces that the OS “knows about”:

ifconfig -a | grep -c eth

A positive integer should be the result, and it should also match the number of lines in
/etc/modprobe.conf that begin with the string alias eth. For each interface in the system, one
bit of pertinent hardware information to be found is usually the MAC address of the interface.
For example, to get the MAC address of interface eth0, try using:

ifconfig eth0 | grep ethO | awk '{print $5}'

You can also determine if the interface is administratively up (since it is possible for the
OS to consider the interface “up” regardless of link state) using:

ifconfig | grep -A 1 ethO | grep -c UP

Page 6 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

The return will be 1 if the interface is administratively up.

Ispci

Similar to the tool Isscsi, you can use Ispci to examine the PCI devices discovered by
the system during boot. With respect to NICs, the simplest thing is to count the number of
Ethernet interfaces in the system:

I spci | grep -c Ethernet

The result (a positive integer) should be equal to the number of interfaces counted by the
ifconfig command above. If it isn't, then a driver may be failing to load (for any number of
reasons), or your system doesn't actually have all the interfaces listed in /etc/modprobe.conf,
or your OS release may not have the necessary drivers.

You can get the PCI device number for each NIC as well:
I spci | grep Ethernet | awk '{print $1}'

As noted above, you can (in most instances) correlate the PCI device number to the
interface name in the OS using ethtool -i. Use caution, however; the PCI device number may
not be reported in the same format by both tools, and additional parsing may be required to
correctly match one to the other.

By adding the -v parameter to Ispci, you can get additional information for each Ethernet
device; adding -vv will sometimes reveal even more information. Exactly what information can
be gleaned, and how it should be parsed, depends greatly on the device in question. In a few
cases, it may be possible to extract the interface's MAC address using Ispci, although that
seems to be the exception rather than the rule. The reader is encouraged to explore the
possibilities on their own hardware.

dmidecode

Exactly what dmidecode can tell you about the network interfaces, and how you use i,
is primarily determined by the underlying platform; generally, it is only useful for physical
platforms, not virtual. In some cases, Blade vs. Rackmount may also make a difference.
IBM Hosts

On both IBM Blades and Rackmounts, start with:

dm decode -t 8

Page 7 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

This will list certain devices, differentiated by Port Connector. Many devices may be
listed, including USB ports, SCSI HBAs and network interfaces. In terms of NICs, the output
will look something like this example:

Handl e Ox000E, DM type 8, 9 bytes
Port Connector Information
I nternal Reference Designator: Not Specified
I nternal Connector Type: None
External Reference Designator: G gabit Ethernet
Ext ernal Connector Type: RJ-45
Port Type: Network Port

The differentiator here is the final line. The string Port Type: Network Port typically
indicates a network interface card. The string beginning Handle 0x gives a hexadecimal value,
and it starts at various numbers (that is, the first value is not necessarily 0x0000), but will be
presented in numerical order, and will have a definite range (e.g. from 000E to 001C). In a
script, you'd have to determine the decimal equivalent of the first Handle 0x entry in the
command output, and also the number of Handle 0x entries. Then you could construct a loop,
using grep to extract each unique string starting with Handle 0x, and use the -A parameter to
grab the 6 trailing lines of text so you can evaluate each block of output individually™.

If, in an individual output block, you find the string Network Port on the Port Type line,
then you probably have a NIC, and can parse the other lines for more information. In the
example above, the External Reference Designator line indicates both that it is an Ethernet
NIC and that it supports media speeds up to 1000Mb/s.

CAUTION

This command only reports embedded NICs, not add-on (in a bus
slot) NICs.

A number of caveats apply to this technique. For example, Rackmounted systems may
report an RSA interface as having the same Port Type, as shown in this example:

Handl e OxO0DA, DM type 8, 9 bytes

Port Connector |Information
I nternal Reference Designator: Not Specified
I nternal Connector Type: None
Ext ernal Reference Designator: RSA Ethernet
Ext ernal Connector Type: RJ-45
Port Type: Network Port

In that case, additional analysis of the External Reference Designator line would be
needed to differentiate that interface from a NIC that the OS should see.

Page 8 of 15



Probing System Hardware in Linux © 2010-2011 David Bank
On IBM Blades (but not on Rackmounts), you can use the additional command:
dni decode -t 10

The output will list certain items of On Board Device information; again, it will list more
than just network interfaces. The output for a typical network interface would look like this:

On Board Device 2 Information
Type: Ethernet
St atus: Enabl ed
Description: Ethernet 1 BroadCom 5704S Et hernet Controller

Each Ethernet interface will have a Description string that begins with Ethernet and is
followed by a number. The numbers for the interfaces will start at 1 and go up in numerical
order, making it easy to program into a script loop. The line Type: Ethernet is the determinant
for a network interface. The Status line indicates if the NIC has been disabled in BIOS, and the
full Description text closely (but not exactly) matches the descriptive text retrieved by Ispci.

HP/Compaq

The -t 8 and -t 10 command-line options are not useful on HP hardware. Instead, use the
command:
dmi decode -t 209

This reports similar information in a single block limited to just NICs (so no parsing
multiple entries trying to distinguish NICs from other devices; the Handle may also be ignored),
as shown in this example:

Handl e 0xD100, DM type 209, 36 bytes

HP BIOS NIC PCl and MAC I nfornmmtion
NIC 1: PCl device 02:02.0, MAC address 00: 15: 60: AA: 84: 00
NI C 2: PCl device 02:02.1, MAC address 00: 15:60: AC. 74: FF
NI C 3: PCl device 05:01.0, MAC address 00: 16: 35: C5: CD: BO
NI C 4. PCl device 05:02.0, MAC address 00: 16: 35: C6: CD. AF

From this output, the PCI device number and MAC address can be extracted for each
on-board NIC. Media, connector type and other descriptive information will have to come from
elsewhere.

CAUTION

This command only reports embedded NICs, not add-on (in a bus
slot) NICs. Also, while NIC 1 will usually refer to eth0, there is no
guarantee of such a correlation. Finally, iLO NICs are not listed.

Page 9 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

Sun
Similar to IBM hardware, start with the command:
dm decode -t 8

While the output is very similar to that on IBM hosts, the analysis is not:

Handl e 0x0024, DM type 8, 9 bytes

Port Connector Information
I nternal Reference Designator: J13
I nternal Connector Type: None
Ext ernal Reference Designator: LANO
Ext ernal Connector Type: RJ-45
Port Type: Network Port

Among other differences, it is important to note that the External Reference
Designator for NICs is in the form LAN#. However, it seems that Sun ILOM interfaces are not
detected by this command, so that makes analysis somewhat easier.

Also, similar to IBM Blades, you can get some additional information with:
dm decode -t 10

This will list certain items of On Board Device information; again, it will list more than
just network interfaces. The output for a typical network interface would look like this:

Handl e 0x0041, DM type 10, 6 bytes
On Board Device Infornation
Type: Ethernet
Status: Enabl ed
Description: G gabit Ethernet #1

CAUTION

Unlike the output from IBM Blades, the On Board Device lines do
not have sequential numbers differentiating each information block.
Instead, the Handle Ox line must be used. The Type and Status
lines appear to use the same values as the IBM Blades, but the
Description line has an additional numeric identifier (starts
counting at 1, but digits may also appear in other Description lines
not associated to NICs).

Page 10 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

KVM and VMware
The dmidecode tool is not useful for extracting NIC information on these platforms.

RAM

On both physical and virtual platforms, you can retrieve information about the RAM
installed on the host with the command:

dmidecode -t 17

The returned output is similar to:

Handle 0x001E, DMI type 17, 27 bytes
Memory Device
Array Handle: 0x001D
Error Information Handle: No Error
Total Width: 32 bits
Data Width: 32 bits
Size: 2048 MB
Form Factor: DIMM
Set: None
Locator: RAM slot #0
Bank Locator: RAM slot #0
Type: DRAM
Type Detail: EDO
Speed: Unknown
Manufacturer: Not Specified
Serial Number: Not Specified
Asset Tag: Not Specified
Part Number: Not Specified

Handle 0x001F, DMI type 17, 27 bytes
Memory Device
Array Handle: 0x001D
Error Information Handle: No Error
Total Width: 32 bits
Data Width: 32 bits
Size: 2048 MB
Form Factor: DIMM
Set: None
Locator: RAM slot #1
Bank Locator: RAM slot #1
Type: DRAM
Type Detail: EDO
Speed: Unknown
Manufacturer: Not Specified
Serial Number: Not Specified
Asset Tag: Not Specified
Part Number: Not Specified

For analysis, you can use grep to collect all the Size lines, then split out the numeric
value (which should always be in MB) and compute the total. Here is a sample script:

Page 11 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

#!/ bi n/ bash
TOTALRAM=0
RAMSTI CKS="dni decode -t 17 | grep 'MB' | grep 'Size:' | awk '{print $2}'°
for RAMSTICK in ${RAMSTICKS[@}; do
(( TOTALRAM = TOTALRAM + RAMSTI CK ))
done
echo "The system has ${TOTALRAM MB of RAMinstalled"

A KVM host will report total RAM as a single memory DIMM in a single slot. Hosts in a
VMware environment may not report the same RAM as is allocated to the VM in the VIC.

CPU Analysis

While analyzing CPUs might seem relatively simple, that can be deceiving. Some basic
information is straightforward. For example, the command:

grep -m1 'vendor_id" /proc/cpuinfo | awk '{print $3}'

will return a string — within the scope of this paper, the two most-likely values are
Genuinelntel or AuthenticAMD, although simply Intel or AMD may also be returned.

When dealing with Intel CPUs, you should be able to get the CPU's Model with the
command:
grep -m1 'nodel nanme' /proc/cpuinfo | awk '{print $5}' | awk -F ' (' '{print $1}'

AMD is not quite as straightforward; start with the command:
grep -m1 'nodel nane' /proc/cpuinfo | awk '{print $8}'
If that returns a null string, then try:
grep -m1 'nodel nane' /proc/cpuinfo | awk '{print $7}'
In both cases, the string will be a generic name used for marketing (e.g. Xeon for Intel,
8218 for AMD). If you want to get more precise, then examine the lines for cpu family, model
and stepping.
You can also examine the flags line if you need to determine whether or not a particular
CPU feature is supported. For example, if the flags line contains the string Im, then the CPU
supports 64-bit long mode (note that if your kernel is a 32-bit kernel, the flag may not be

present even if the CPU does have the support). The string ht or htt indicates HyperThreading
support in the CPU (although it may have been disabled in BIOS).

Page 12 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

Individual physical CPUs can be distinguished by each unique value in the physical id
field, although any given value will appear more than once when dealing with a multi-core (or
HyperThreaded) CPU type. The cpu cores field will show the number of cores per CPU, but
won't help distinguish a HyperThreaded CPU from an actual unicore CPU.

You can also gather much the same information in a slightly more-processed format with
the command:

dm decode -t 4

The outputs are very similar, although referencing /proc/cpuinfo provides you with
somewhat more elemental information. The route you should choose depends on your needs
and situation.

Fiber HBAs

The statements loading the HBA drivers will be in /etc/modprobe.conf and appear on
lines containing the string scsi_hostadapter. Drivers for other SCSI devices (e.g. RAID arrays,
CD-ROM drivers, efc.) also appear on similar lines, so it is necessary to examine the driver
name on the same line to determine if it is an HBA driver. You can also use Ismod to see if the
specific kernel modules for your HBA brand/model are loaded.

This paper will focus on detecting and analyzing two of the more common HBA
manufacturers, Emulex and Qlogic. The techniques may or may not transfer well to other
OEMs.

Depending on the kernel and driver versions, information about HBAs can be found
under either /sys/class/scsi_host or /proc/scsi (the latter location is typical for older kernel
and driver versions). Beyond detecting which drivers are loaded, analyzing the HBA information
requires parsing information in files under those directories.

Emulex

For each HBA, there should be a sub-directory in /sys/class/scsi_host and the sub-
directory will be named host# where # is a digit. Note that other SCSI devices (such as RAID
adapters) will have entries in the same place, and following the same naming convention. You
can distinguish a sub-directory associated with an Emulex HBA by looking for a file named
modeldesc - if it is present and contains the string Emulex, then the sub-directory is
associated with an Emulex HBA.

In that sub-directory, the modelname file will contain the Model of the HBA. The
Ipfc_drvr_version file contains the version of the Ipfc driver; the fwrev file has the version of

Page 13 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

the HBA's firmware. The WWPN is in the node_name file and the adapter port's state can be
determined by examining the state file. The media speed can be found in the speed file.

Qlogic

In older kernel/driver environments, start by looking for subdirectories of /proc/scsi with
names that start with the letters qla (possible names include gla2xxx and qla2300). When
present, information can be extracted by examining the single file (per HBA) in the directory
structure. The file name will be a number (e.g. 1); while the numbers will be sequential,
counting does not necessarily begin at 0. Typically, the HBA's Model, Firmware Version,
WWPN and Port State can be determined by parsing the file associated with the HBA. The
version of the driver should also be accessible.

For environments with newer kernel/driver versions, for each HBA there will be a sub-
directory in /sys/class/scsi_host. The sub-directory will be named host# where # is a digit.
Note that other SCSI devices (such as RAID adapters) may have associated directories in the
same place, and following the same naming convention. You can distinguish a sub-directory
associated with a QLogic HBA by looking for a file named model_name - if it is present, then
the sub-directory is associated with a QLogic HBA and the contents of the file will have the
Model of the HBA.

Also in that sub-directory, the driver_version file contains the version of the QLogic
driver; the fw_version file has the version of the HBA's firmware. The WWPN is in the
port_name file and the adapter port's state can be determined by examining the state file.

Tips for Probing Hardware

First, decide what information you need to find. Is it enough to determine that you're
running on an AMD CPU, or is it important to distinguish an 885 from an 82187 For your
purposes are all Ethernet interfaces the same, or is separating BroadCom from RealTek
crucial?

Once you have a clear idea of the depth to which you'll need to plumb, look at your
tools. Is the Swiss Army knife called dmidecode sufficient? Does it reliably offer all the
information you need, or will you have to dig?

If you're going to have to dig, it simply becomes a matter of figuring out where the OS,
or the driver, squirrels away the data you want. Looking under /sys/class or /proc are usually
the best places to start. Use Isof to determine what files the driver opens, and check dmesg
for additional hints and pointers!'.

Page 14 of 15



Probing System Hardware in Linux © 2010-2011 David Bank

Footnotes

[1] Sometimes one can find devices via a generic driver, such as some PCI devices, even if the OS did
not load the correct driver or kernel modules for the specific bit of hardware. Doing so is outside the
scope of this paper.

[2] There are, of course, any number of other approaches, such as (to mention one example) looking for
/proc/vmcore (indicating a KVM system, either a Guest or a Host) or looking for specific kernel modules
(e.g. kvm or vmmemctl) listed in /proc/modules. This paper is presenting a generic starting point.

[3] http://www.demidecode.org

[4] For the purposes of this paper, the primary use for a Serial Number is to differentiate one system on
a particular hardware type from another system on the same hardware type. The combination of the
OEM, Model and Serial Number can be thought of as a unique key for identifying the hardware.

[5] Some virtualized network interfaces are problematic.

[6] In some cases, it is possible to retrieve the Burned-In Address using ethtool -e. However, even when
the information is present, the offset (within the output stream) is highly variable (depending on the NIC,
the driver and whether or not the NIC is part of a logical bond). Readers are encouraged to experiment
with their own hardware.

[7] This can occur when the blade chassis switch port underlying the blade's NIC is enabled, but it not
actually connected to anything (or is not configured to properly transport the blade's IP traffic).

[8] The fact that this can happen indicates just how complex the underlying hardware architecture can
be.

[9] Naturally, there are many other methods and tools to parse and analyze the output. Choose those
applicable to your environment and goals.

[10] Occasionally, you can dig bits of information out of dmesg that can't be found anywhere else, if for
no other reason than the bit of information is only present at the time a driver initializes.

Change Log
Version Date Change
0.10 2010-Aug-10 Initial creation
0.20 2010-Sep-28 Revised and expanded
0.30 2010-Oct-25 Revised and expanded
0.40 2010-Nov-11 Revised and expanded
0.50 2010-Dec-13 Revised for publication
1.00 2011-Jan-14 Published

End of Document
© 2010-2011David Bank

Page 15 of 15



	Physical Host Model and Blade Slot
	Compaq/HP Hosts: Model and Blade Slot
	IBM Hosts: Model and Blade Slot
	Sun x86 Hosts: Model
	Physical and Virtual Host Serial Numbers
	Compaq/HP and IBM Hardware
	Sun Hardware
	Virtualized Platforms
	Ethernet Network Interfaces
	RAM
	CPU Analysis
	Fiber HBAs
		Version		Date			Change  			

