Secure Remote Access with OpenSSH and rssh

by David Bank CNE, CCSE, CCNA

v1.75 (2008-Dec-10)
© 2006-2008 David Bank

Why...

...1s there a need for secure remote access?

To enable end-user access to hosts in the Linux/UNIX environment, the old standbys have been
telnet (to reach a command prompt) and FTP (to transfer files). These protocols have been around since
the mid-1980s, and are defined by RFC 854!!! (telnet) and RFC 959! (FTP).

They're also very insecure. Both protocols conduct their communication "in the clear", meaning
that not only are the login credentials sent unencrypted, but all of the data transmitted back and forth are
likewise open for anyone to read. Every keystroke, every password, every byte, can be silently
intercepted and/or recorded.

Even within a "closed" or heavily-firewalled network, it is easy to overlook the dangers of
unauthorized ARP- or ICMP-based re-direction, which would allow someone who had gained access to
the network (legitimately or not) to conduct "man in the middle" (MitM) or similar attacks. Telnet and
FTP offer no defenses against this, or any way to detect such subtle intrusions.

The original Internet environment was populated by a relative few, and relied as much on trust as
anything else. More than 20 years have passed since then - the modern computing environment, for
better or worse, is not inherently trustworthy, and insecure tools can be as dangerous as they are
ubiquitous. Telnet and FTP are both. New, secure tools are needed.

...0OpenSSH and rssh?

The Secure Shell protocol is actually a series of protocols, defined by several RFCs, including:

RFC 42513 Secure Shell (SSH) Protocol Architecture

RFC 42524 Secure Shell (SSH) Authentication Protocol

RFC 42565 Generic Message Exchange Authentication for the Secure Shell Protocol
(SSH)

OpenSSH'®! is probably the best-known implementation of the SSH suite, and arguably the one
with the widest OS vendor adoption, being supported on platforms as diverse as IBM AIX, Novell

NetWare, Sun Solaris and practically every Linux distribution.

OpenSSH combines the shell/command-line functionality of telnet with the file transfer
capability of FTP. Through its subsystem feature, its functionality can be extended even further. Using a
single software stack for these services simplifies system management, providing a single point for
configuration, authentication and logging.

Page 1 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Important!

This paper is based on the Portable version of OpenSSH, which varies in a
number of ways, subtle and otherwise, from the OpenBSD version of the
package. If you are using the OpenBSD version and encounter
documentation conflicts between this paper and the man pages, consider
the OpenBSD man pages as the more-accurate source for that platform.

rssh!®! is an extension to the OpenSSH environment that allows the system administrator to more
finely control access through OpenSSH. Designed to work specifically with OpenSSH, rssh is a
restricted shell that can prevent or allow specific functions of OpenSSH, on a global or per-user basis.

...not "secure" telnet or FTP/S?

When considering implementation of telnet and FTP protocol variations that provide secure
communications, the first thing one must ask is: "Which one?"

For example, just for FTP, there are at least two RFCs for providing "secure" FTP:

RFC 2228° FTP Security Extensions
RFC 421719 Securing FTP with TLS

Similarly, several RFCs cover options to "secure" telnet; among them:

RFC 2946!'"! Telnet Data Encryption Options
RFC 3205121 On the use of HTTP as a Substrate

None of those methods enjoys wide implementation or vendor acceptance. Further, this approach
results in two software stacks for what are really very similar purposes, whereas OpenSSH is a single
software stack for both activities. With the submission of RFCs for the SSH protocol, OpenSSH
becomes just as "standard" as telnet and FTP have been.

...this paper?

The goal of this paper is to provide a basic road map for the installation and configuration of
OpenSSH and rssh in a *NIX/Linux environment. Then, the paper will cover how this software
combination can be leveraged to provide a secure communications framework. While advanced
functions, such as port forwarding and the ability to tunnel other protocols through SSH, are mentioned,
those topics are outside the formal scope of this paper. Similarly, integrating OpenSSH with specific
authentication back-ends (such as Kerberos) or additional security tools (such as TCP Wrappers) are also
outside the scope.

Page 2 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

It is important to keep in mind that these tools are not a magic security bullet. They will not
protect against an account compromised by other means (e.g. someone learning a user's password,
perhaps by social engineering), filesystem insecurity, attacks against other services (e.g. a webserver
exploit) or insecure configuration of other tools or services.

How To Build and Install OpenSSH and rssh

OpenSSH and rssh are both Free/Open-Source Software (FOSS) packages. These softwares are
among the few that I prefer to build from source, so this paper covers those steps.

Why Not Packages?

Common practice in the Linux/UNIX world is to install pre-built packages, usually provided by
the platform vendor or distribution maintainer, rather than to build from source. Where a package is not
part of the "official" offering, it is often available from a 3" party (e.g. the software author, a site like
SunFreeware!”, or other independent repository). Many modern Linux/UNIX distributions include a
pre-built OpenSSH. rssh is also available in package format, although it seems less common to find it
already included in distributions (some versions of Gentoo and Debian have it).

Why, then, does this paper take the build from source approach?

When using a pre-built package, one must accept whatever compile-time configuration decisions
were made by the package creator. These parameters may or may not be adjustable at run-time, and
compile-time options selected by the package creator may or may not be appropriate to a specific
environment. Building from source allows tailoring the software. As with any other system
administration decision, weigh the factors in the environment and choose a course of action.

If you decide to use a pre-built package, skip past the Compilation and Installation sections - start
reading at the Configuration section. You should follow the package installation documentation, and
reference this paper for configuration tips. The current versions, as of this writing, are OpenSSH v5.0p1
and rssh v2.3.2.

Standards and Assumptions

This paper's assumptions, for those wishing to build from source, include the use of a modern
Linux or UNIX (or UNIX-like) operating system, the ability to run shell scripts, compile C code (with
GNU gcc or an equivalent), copy and/or link files, and set file modes and ownership. While some of
these tasks require root privilege, you should only invoke that when you specifically need it (for
example, most compilation steps can probably be accomplished as an unprivileged user). Additionally,
this paper assumes that OpenSSL, and the zlib data compression libraries, have already been installed
and configured.

Page 3 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Every system admin has their own way of doing things, and their own sense of where to put files.
This paper is written from my perspective on these issues, which may be different from the maintainers
of the pre-built packages. Select whatever file location scheme for these tools that is appropriate to your
environment, and if necessary translate my paths and locations into the scheme you select.

My personal environment is usually either SLES v9 (or later) with gee v3.3.3 (or later), RHEL v4
(or later) with gee v3.4.6 (or later) or Sun Solaris v8 (or later) with gee v3.3.2 (or later). Other common
tools include GNU make v3.8x and nano v2.0.x; however, I try to use a platform's stock development
tools such as 1d, ar, yacc and lex. I also tend to create a sub-directory structure specifically for building
add-on tools, generally /work. Make sure the partition where this is located has adequate room.

I usually install add-on tools, like OpenSSH and rssh, in a sub-directory off of /opt, and then use
symbolic links in /usr/bin or wherever else might be needed. This allows me to control access better than
if everything is dumped in /usr/local. 1 prefer symbolic links because I frequently make /opt its own
partition, and I can "snap-in" a newer version of a tool with a few mv commands, since the link is merely
a pointer to a path and file name (a hard link is another inode entry and can't cross partition boundaries).

What About Deployment Tool/Technique X?

Administrators accustomed to working in a homogeneous environment may wonder why this
paper does not mention or advocate the use of specific tools for deployment beyond a single machine, or
uses techniques that might seem problematic when viewed from a specific environment perspective. A
reader might find themselves thinking “Why not just use <insert tool name here>?" or “That suggestion
doesn't make sense in <insert specific environment name here>!"

This paper is deliberately written for a generic audience, where a reader may be interested in
applying the information presented in diverse environments, perhaps other than a typical Linux
distribution or common UNIX variant. As a consequence, it offers ideas culled from a number of
environments. The reader is encouraged to consider those ideas, techniques and tools that are applicable
to their situation, and to ignore those that are not.

OpenSSH and TCP Wrappers in *NIX

On Linux and most *NIX platforms, OpenSSH can be compiled with support for TCP
Wrappers'?, although doing so is not specifically covered in this paper. If TCP Wrappers is installed on
the system!"™ but you decide to not compile OpenSSH with TCP Wrappers support, you can still leverage
TCP Wrappers by invoking sshd via inetd (or xinetd). Consult the TCP Wrappers documentation for
details.

Page 4 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

Note to Solaris Admins

As of Solaris v9, Sun has added TCP Wrappers support to Solaris. The
package name is SUNWtcpd.

Download and unpack the sources

However might be appropriate for your environment, download the latest OpenSSH and rssh
source packages. For example, into /work/openssh and /work/rssh, respectively (assuming the gzip-ed
versions):

me@ost /work 2 $ dir

drwx------ 2 me wheel 512 Apr 9 12: 23 openssh/

drwx------ 2 me wheel 512 Apr 9 12:23 rssh/

me@ost /work 3 $ dir openssh

SrW- - - - - 1 me wheel 961213 Apr 9 15: 32 openssh-5.0pl.tar.gz
me@ost /work 4 $ dir rssh

SPW---- - 1 me wheel 585704 Apr 9 19:47 rssh-2.3.2.tar.gz

Downloading and verifying the file signatures is also a wise step; however, it is outside the scope
of the paper.

If your tar program includes the ability to decompress gzip-ed files, then you can use it directly;
or you can call gzip as a separate step on the way to un-taring the files. Here is the latter method, with
the three commands separated by semi-colons:

me@ost /work/openssh 8 $ gzip -dv *.gz ; tar -xvf*.tar ; gzip -v9 *.tar
...and...
nme@ost /work/rssh 10 $ gzip -dv *.gz ; tar -xvf*.tar ; gzip -v9 *.tar

The commands will decompress the files, unpack the tarfile, then recompress the tarfile using the
best compression offered by gzip. No sense wasting disk space leaving the uncompressed tarfile around.
Or you can delete the tarfile. If you like and have it installed, substitute bzip2 for gzip when re-
compressing — the results tend to be better.

The source files now reside in a directory named very similar to the file from which everything

was extracted. If you, like me, use the autocompletion capability of the Bash shell, this can be annoying.
So I usually change the directory name to something short:

Page 5 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

me@ost /work/openssh 12 $ nmv openssh-5.0.pl V5.0pl

ne@ost /work/openssh 13 $ dir

STW-- - - - 1 me wheel 961231 Apr 10 19: 47 openssh-5.0pl.tar. gz
-FWK------ 1 me wheel 512 Apr 10 19:47 V5. 0pl/

me@ost /work/openssh 14 $ cd ../rssh

nme@ost /work/rssh 15 $ nmv rssh-2.3.2 Vv2.3.2

me@ost /work/rssh 16 $ dir

SPW-- - - 1 me wheel 585704 Nov 10 19:47 rssh-2.3.2.tar.gz

- FWX------ 1 nme wheel 512 Nov 10 19:47 V2.3.2/

Now autocompletion won't beep at me. You can get ready to build OpenSSH with:

me@ost /work/rssh 17 $ cd ../openssh/ Vv
me@ost /work/openssh/V5.0pl 18 $

OpenSSH: Compilation

Helpfully, OpenSSH uses the ubiquitous GNU autoconf configuration tool. The script configure
will automatically examine your system, check dependencies, and prepare OpenSSH to be compiled with
a built-in set of defaults.

However, since building from source offers flexibility, I recommend a few tweaks. For example,
the default location of the OpenSSH binary is /usr/local, and as I noted above, 1 prefer /opt/openssh. You
can see all the possible configuration options, and their defaults, with the "--help" parameter:

nme@ost /work/openssh/V5.0pl1 19 $./configure --help

This will show you a lot of information, but won't actually configure or compile anything. What
you might change from the defaults is largely dependent on your preferences and standards in your
environment.

Within the context of this paper, I suggest the following defaults, which can be selected from the
command-line when invoking the configure script:

ne@ost /work/openssh/V5.07pl 20 $./configure --prefix=/opt/openssh \
--sysconfdir=/opt/openssh/conf --with-zlib=/path/to/zlib \
--wWith-ssl-dir=/path/to/openssl --wth-pid-dir=/var/run \
--with-privsep-path=/var/enpty/or/alternate \
--wWith-privsep-user=user nane \
--wW t h- mant ype=nan

Why these particular options and settings? Glad you asked that:
--prefix=/opt/openssh

See my previous discussion about file locations.

Page 6 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

--sysconfdi r=/ opt/ openssh/ conf

Without this, the location of the OpenSSH configuration files and encryption keys would
be in /opt/openssh/etc. As time-honored as efc is, I prefer the more-descriptive conf.

--wth-zlib=/path/to/zlib

This option simply tells the configure script where the zlib software is located. configure
would almost certainly figure this out for itself, I'm just making sure.

--wi th-ssldir=/path/tol/openssl

Similar to the previous option, I'm simply saving configure the trouble of locating the
OpenSSL files. Make the script earn its keep, if you prefer.

--wWith-pid-dir=/var/run

When running, the sshd daemon will write its process ID in the file sshd.pid and place it
in this directory. Actually, /var/run is the default if this option is omitted; it's being
shown here for demonstrative purposes.

--W th-privsep-path=/var/enpty/or/alternate

The concept of Privilege Separation is discussed in more detail below. This option
merely defines the directory that will be used by the PrivSep process. The default is
/var/empty, but it can be anywhere (within reason). This directory will be created by the
make install command, if it doesn't already exist. If you create it by hand (or use a pre-
existing location), the directory should be owned by root, mode 755, and not contain any
other files or directories.

--W t h-privsep-user=user nane

Using this option, you can specify a non-privileged user name for Privilege Separation.
The default value is sshd. This user name must exist or sshd will not run (the software
will install without the user ID having been defined, but the install script will complain).

--W t h- mant ype=man

This option instructs configure to create documentation in man format. Other options
include cat (for catrman format) or doc. Set as you prefer.

Page 7 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

At this point, the configure script should have been run, with any options you wanted. For the
purposes of this paper, the assumption is made that it ran without errors, or that any issues have been
fixed. Among other things, configure will generate Makefile in the same directory, and this is used for
the rest of the process.

You're now ready to compile the OpenSSH suite:
me@ost /work/openssh/V5.0pl1 21 $ nake

This starts the compilation process. Troubleshooting compilation issues is outside the scope of
this paper, so we'll proceed to the next stage.

OpenSSH: Installation

If you've gotten to this point without any problems, the rest of the process should be equally
trouble-free. To actually install the program files, you need to have root privilege because, among other
things, you'll be setting SUID bits in file modes, and usually only root can do that. So, invoke su:

nme@ost /work/openssh/V5.0pl1 25 $ su -
Now that you are privileged, install the program:
make install

Again, troubleshooting installation error messages are outside the scope of this paper. When the
script has run, it's a good idea to check the results, which should look like this (not all installation
directories are shown):

#1s -la /opt
drwxr-xr-x 7 root ot her 512 Apr 11 13: 34 openssh/
1s -la /opt/openssh/bin

-IFWXr-Xr-x 2 root ot her 37676 Apr 11 13: 34 scp*

-ITWXI-Xr-x 2 root ot her 68000 Apr 11 13:34 sftp*

I rwxrwxrwx 1 root ot her 5 Apr 11 13:34 slogin -> ./ssh*
-rwWxr-xr-x 1 root ot her 257288 Apr 11 13: 34 ssh*

-rwWxr-x--- 1 root ot her 81488 Apr 11 13: 34 ssh-add*
-rwxr-x--- 1 root ot her 67680 Apr 11 13: 34 ssh-agent*
-rwWxr-x--- 1 root ot her 106748 Apr 11 13: 34 ssh-keygen*
-rwxr-x--- 1 root ot her 147780 Apr 11 13: 34 ssh-keyscan*

1s -la /opt/openssh/conf
-rwr--r-- 1 root ot her 111892 Apr 11 13: 34 nodul i

-rwr--r-- 1 root ot her 3604 Apr 11 13:34 ssh_config

STW---- - 1 root ot her 668 Apr 11 13: 34 ssh_host _dsa_key
-rWr--r-- 1 root ot her 599 Apr 11 13: 34 ssh_host _dsa_key. pub
SPW-- - - - 1 root ot her 524 Apr 11 13: 34 ssh_host _key
-rWr--r-- 1 root ot her 328 Apr 11 13: 34 ssh_host _key. pub

Page 8 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

STW------ 1 root ot her 883 Apr 11 13: 34 ssh_host_rsa_key
-rwWr--r-- 1 root ot her 219 Apr 11 13: 34 ssh_host _rsa_key. pub
-rWr--r-- 1 root ot her 5829 Apr 11 13:34 sshd_config

1s -la /opt/openssh/share

-rWXr-xr-x 1 root ot her 600 Apr 11 13:34 Ssh.bin

1s -la /opt/openssh/libexec

-rwxr-xr-x 1 root ot her 32492 Apr 11 13: 34 sftp-server*

-rws--x--x 1 root ot her 152024 Apr 11 13: 34 ssh-keysi gn*

So, what are all these files? And do you need them all? The answer to the second question is that
you probably need most, but not all, of them.

First, let's look in /opt/openssh/bin. Here, you'll find secure implementations of many venerable
*NIX programs client tools, as well as some new ones. scp is the Secure remote CoPy program, similar
in function to recp. As its name suggests, sftp is the Secure FTP client, which accepts many of the same
commands as does a standard ftp client program. ssh (and its associated symlink slogin) is the Secure
SHell client program that effectively replaces telnet, login, rsh, rexec and rlogin.

The programs ssh-add and ssh-agent are complementary, and form the foundation for a public-
key-based single-sign-on framework, under which a user can automate authentication to other
environments that support key-based authentication. ssh-keygen and ssh-keyscan are tools for users to
manage their own authentication keys. Each of these has its own man (or whatever documentation
format you chose) page. Unless you wish to deny certain client tools to your user population, you need
all the programs in this directory.

Next, the /opt/openssh/conf directory houses system-wide files. ssh_config is the configuration
for the ssh program, but is ignored if the invocation of ssh includes the -F parameter. The file
sshd_config is the configuration of the sshd server daemon. The server's private keys are in the files
ssh_host_key, ssh_host_rsa_key and ssh_host_dsa_key. It is important that these files be protected (in
the default installation they can only be read by root), as with them, anyone may impersonate your host.
The server's public keys are in the files, ssh_host_rsa_key.pub, ssh_host_dsa_key.pub and
ssh_host_key.pub - these may be read by anyone. The file moduli contains large prime numbers for
generation of Diffie-Hellman (DH) keys and was created as part of the installation (i.e. is unique to your
system)."""!

In /opt/openssh/share, we find Ssh.bin, which is an experimental Java applet for smartcard
readers using OpenSC. If this is not needed, then you may safely remove this file and directory.

Finally, in the directory /opt/openssh/libexec, there are the programs ssh-keysign and sftp-
server. The first is a helper program for host-based authentication, and is invoked by ssh when the
EnableSSHKeysign directive is set to yes in ssh_config. The latter is the SFTP server subsystem
invoked by sshd when a client requests that subsystem. SFTP is not provided by sshd without this
subsystem, and subsystems in general are discussed later in this paper.

Page 9 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

If everything is correct, and you've installed the OpenSSH client programs (e.g. ssh, sftp) into a
location not normally in your $PATH (like /opt/openssh), then you'll probably want to link the files to
/usr/bin or wherever is appropriate, like so (not all possible links shown):

n -s /opt/openssh/bin/sftp /usr/bin/sftp

n -s /opt/openssh/bin/ssh /usr/bin/ssh

n -s /opt/openssh/bin/ssh /usr/bin/scp

n -s /opt/openssh/bin/ssh /usr/bin/slogin

n -s /opt/openssh/sbin/sshd /usr/sbin/sshd

n -s /opt/openssh/ man/ manl/ssh. 1 /usr/share/ man/ manl/ ssh. 1

n -s /opt/openssh/ man/ manl/sftp.1 /usr/share/ man/ manl/sftp.1

n -s /opt/openssh/ man/ manl/ scp. 1 /usr/share/ man/ manl/ scp. 1

n -s /opt/openssh/ man/ man5/ ssh_confi g.5 /usr/share/ man/ man5/ ssh_config. 5

n -s /opt/openssh/ man/ man5/ sshd_confi g.5 /usr/share/ man/ man5/ sshd_config. 5

HHHFHHHEHH R

Again, exactly what you install (or link) where is driven by how you administer your
environment. This paper merely shows one possible way.

OpenSSH: Configuration

With OpenSSH installed, it's time to configure the server (sshd). The server is configured by the
file /opt/openssh/conf/sshd_conf (or wherever your SSH configuration files are located).

It's important to note that options selected at the command line override the configuration file.
Choose one way or the other to configure sshd. Don't mix the two methods, or you'll create an
environment that is more difficult to administer.

The default configuration file will contain many option keywords, and may include keywords for
options that are not supported in your sshd build. For example, the standard sshd_config file contains
references to Kerberos and GSSAPI. However, if you didn't compile in Kerberos support (or it wasn't
included in the sshd from your package), then the options aren't supported. The content of the man page
for sshd_config also varies by what the compilation options were.

You can edit the sshd_config file that was installed, or write your own. The included file is
moderately well documented. A more complete version is in the Reference section below.

It's not practical to review every possible keyword, but let's take a look at some of the more
important ones, as they appear in the file provided in the Reference section:

Pr ot ocol 2

[17]

In its default configuration, sshd supports both SSH v1 and SSH v2 protocols' .
However, SSH v1 has a number of security weaknesses, and is generally considered

Page 10 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

deprecated (although a number of devices - like routers - that support SSH access only
support SSH v1). Unless you have some insurmountable technical challenge that prevents
you from requiring clients accessing your SSH server to always use SSH v2, disable SSH
v1 support.

Al | owTCPForwar di ng yes

Known as "the poor man's VPN", TCP Forwarding allows TCP packets from an SSH
client machine to be redirected, or forwarded, to other ports on the host running the SSH
server. They can also be redirected to remote hosts.

Disabling TCP Forwarding does not prevent users with shell access from setting up their
own forwarders. To a certain extent, you must be able to trust users with shell access.

As arule, never allow TCP Forwarding on SSH servers that allow anonymous access,
such as an Anonymous CVS host. This is because your network can then be probed, with
an attacker using the anonymous access to redirect packets to various hosts within your
network. Shell access is not required to abuse TCP Forwarding - any sshd-delivered
service can be leveraged.

In a situation where you must permit TCP Forwarding on a host that also has anonymous
access, then you may be able to use tools such as TCP Wrappers to strictly control the
behavior of sshd. As noted previously, TCP Wrappers is out-of-scope for this basic paper;
you should consult the OpenSSH and TCP Wrappers documentation concerning using
TCP Wrappers to exercise control over SSH.

If you are able to prevent users from editing their authorized_keys file (which would
generally mean that you prohibit them from writing at all to their home directory; or you
use a global authorized_keys file that you control), then it's possible to use options on
the keys in the file to limit what the users can do with respect to forwarding TCP
packets.

Finally, introduced as an sshd option in OpenSSH v4.4, the PermitOpen directive
affords a measure of granularity over TCP Forwarding. Consider limiting any TCP
Forwarding you enable using this option.

ChrootDirectory

An in-depth discussion of chroot is out of the scope of this paper. However, it is
mentioned here because, as of OpenSSH v5.0p1, the SSH server (sshd) natively supports
the function. This means it is no longer necessary to use rssh (or to jail the entire SSH
server) for chroot.

Page 11 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Gat ewayPorts no

If enabled, this option allows the SSH server to listen for forwarded ports on any
interface. Normally, sshd will only listen for forwarded ports on 127.0.0.1, the loopback
interface. This means that only programs running on the SSH server can have their TCP
packets forwarded to an SSH client. Other hosts cannot have their TCP packets
forwarded through the SSH tunnel from the server to the client.

If you set this option to yes, then sshd can be told to listen on other interfaces for TCP
packets hitting forwarded ports, and forward them to the SSH client that requested the
packet forwarding (this arrangement, where the server forwards to the client, is
sometimes called reverse forwarding). SSH clients request this functionality with the -R
parameter when setting up forwarding.

TCP Forwarding presents significant security issues, and GatewayPorts magnifies

those issues by allowing any host to forward packets through the SSH tunnel. While
access to this functionality can also be controlled with TCP Wrappers, you should be sure
you have thoroughly researched the effects of this option, and understand the security
ramifications of allowing GatewayPorts and TCP Forwarding in general.

MaxSt artups 5

Using this option, you limit the number of unauthenticated connections that the SSH
server will accept at any one moment in time. The default is 10, and you should adjust
this higher or lower as your environment requires. Authenticated connections do not
count against this limit.

When the limit is reached, further connection requests are summarily refused, until a
pending connection authenticates, times out, or is dropped (perhaps due to too many
authentication failures). If the limit is set to 0, then there is no limit on simultaneous
unauthenticated connections, and connections are always accepted (until the server
runs out of resources).

The limit can also be expressed as A:B:C, where A is a lower bound, C is an upper
bound, and B is a percentage. In this situation, when the number of unauthenticated
connections reaches A, the next connection has a B% chance of being rejected. As the
number of unauthenticated connections grows above A, the chance of rejection of a
given new connection grows in a linear fashion, roughly expressed by the equation ((100
- B)/(C - A))% per additional connection.

Page 12 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

When the number of unauthenticated connections reaches C, the chance of rejection of a
new connection is 100%. This remains true until an existing pending connection
authenticates, times out, or is dropped.

Per m t Root Logi n no

When set to no, the root account is not allowed to login, even if it is listed in
AllowUsers. Any account with a UID of 0 is affected by this option, not just the account
named root. There are also several caveats that are important to understand.

First, listing root in DenyUsers - or a group of root in DenyGroups - will block root

at connection time. In contrast, if the only impediment to root login is this option, and
proper credentials are provided, the authentication process actually succeeds; the session
is simply immediately terminated. This difference is important in that if you want to
absolutely block remote root access, then doing so with DenyUsers/DenyGroups is

the more sure method.

Next, there exists a poorly documented loophole with this option. Key-based
authentication is allowed to succeed for root, regardless of this option, if a command has
been specified that matches a command in the account's authorized_keys file. If the key
and command match, the command is executed. Again, if you really want to block root,
use a specific listing in DenyUsers.

Finally, using without-password instead of no restricts root login to authentication
methods other than the account password, such as key-based authentication. This prevents
someone who possesses the root password, but not the account's private key, from logging
in.

If you simply have to allow remote root login, and your hosts must also be available from
untrusted/untrustable networks (such as the Internet), then consider architecting a
solution with multiple instances of the sshd server, augmented with host-based firewalls
or tools like TCP Wrappers, where the instance of sshd that allows remote root access is
only available to hosts on a trusted network.

DenyUsers Al |l owlUsers DenyG oups Al | owG oups

These options allow you to specify either user accounts, or groups in which user accounts
are members, that are either specifically denied or permitted to login via SSH. These
options are evaluated in the order listed above, regardless of the order in which they
appear in sshd_config.

Evaluation of these options is by string comparison to user/group names (not UID or

Page 13 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

GID), and wildcards (* and ?) may be used to form patterns for comparison. For
example, jo* would match john and joanne, but not jack. Similarly, t?m would match
tim and tom, but not tommy.

When a user attempts to login, their user name is compared against the list (or patterns)
in DenyUsers. If DenyUsers is not in sshd_config, or if no match is found, then the
user name is compared to AllowUsers. If that option hasn't been specified, then login

is allowed to proceed to the next step. If it has been specified, then if the user name
cannot be matched, the user will be denied login; otherwise, login is allowed to proceed.

If the user name is not denied, then sshd retrieves the groups (Primary and any
Secondary) to which the user ID belongs. These are all compared against the list of
group names and/or patterns in DenyGroups, if it is defined in the configuration. If a
match is found, then the user is denied login; if DenyGroups is not defined, or no match
was found, then the AllowGroups option is checked. If AllowGroups is not defined,

or is defined and any group of which the user is a member can be matched, then login
proceeds. If AllowGroups is defined but no match is found, then login is denied.

The general approach of these options is to deny login if any reason can be found to do
so. It's important to note that if AllowUsers or AllowGroups is specified, then any

user or group name not explicitly listed (or which cannot be matched to a pattern) will be
denied login. When deciding how to approach access control with these options, consider
carefully the ways in which they interact. Generally, it's easier to implement and
understand a configuration that uses either DenyUsers/Groups or

AllowUsers/Groups, but not both.

Perm t User Envi ronnent no

This option controls whether or not sshd will honor environment= parameters on keys in
the user's .ssh/authorized_keys file, or read the user's .ssh/environment file. If set to no
(the default), then the parameters and environment file, if they exist, are ignored. If this
option is yes, then the file is read, if it exists, and any environment= parameters on
authentication keys are honored.

Within the context of the configurations and system design presented by this paper, this

option should never be enabled, as it can allow users to bypass access restrictions. Also,
enabling user control of environment variables will break rssh security.

Page 14 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank
Conpr essi on del ayed

Using this option, the administrator can control when, or if, sshd will honor client
requests for data compression across the link. The default value, delayed, instructs the
SSH server to ignore client requests for compression until after authentication is
successful. This prevents unauthenticated connections from attempting to exploit data
compression libraries (for example, as shown in CVE-2005-2096""%"), while still allowing
authenticated connections to request compression.

Using no means that all client requests for compression are ignored; while yes means that
any client request for compression is honored, even for unauthenticated connections.

While data compression can be useful and significantly enhance performance, especially
across slower links, it's not always appropriate. SSH connections from the local LAN
rarely benefit from compression, and in some cases, such links will actually get worse
performance if compression is used.

Important!

Understand that using Compression delayed may cause

connection negotiation problems for certain SSH clients. The option
causes the SSH server to decline compression requests from the
client during the initial (unauthenticated) session when keys are
exchanged. Some clients will not re-request compression support if
the first request is declined. If the client is configured to require
compression support when talking to the server, then the connection
negotiation will fail.

Client softwares known to have this problem include:
* Van Dyke Software, Secure CRT (v3.x, v4.01)
* SSH Communications Security Corp., SSH Secure
Shell v3.2.9

Client softwares known to not have this problem include:

* OpenSSH v4.x client
* KDE kssh client v0.7

Page 15 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank
UsePrivil egeSeparati on yes

The goal of this option is to enhance security by having the SSH server create
unprivileged child processes to handle initial unauthenticated connections. When a
connection arrives, sshd spawns a child, which runs under the UID/GID of the Privilege
Separation User for which sshd was built. This unprivileged child is further restricted by
chroot to the Privilege Separation Directory hardcoded into sshd.

The child process handles key exchange and receipt of authentication credentials. A
successful attack at this point only compromises the unprivileged (and chrooted) child
process, not the privileged instance of sshd. The child process uses pipes to
communicate with the privileged parent, and the parent process is responsible for
verifying any authentication credentials presented by the remote client. When advised by
the parent that the authentication is valid, the child passes the cryptographic and
authentication state back to the parent, and terminates.

If the authentication was valid, then the privileged SSH server process spawns a new
unprivileged child process, this time using the UID/GID of the authenticating user. This
child process requests a PTY from the privileged parent, and then the user session
begins.

By default, this process is enabled (yes), but the Privilege Separation user ID and
directory must exist on the system. The directory should be owned by root and have
mode 755. If this option is disabled (no), then all communication between the client and
server happens with the privileged sshd instance. If this instance is compromised, then
privilege escalation attacks can occur.

Subsystem

Perhaps the least-understood option (probably because it is not well documented), this is
also a powerful and useful tool. A subsystem can be any executable program; even, in
theory, a shell script.

To understand the ramifications, it's helpful to know how the "standard" subsystem,
SFTP, works. Essentially, invoking the SSH client with the the proper subsystem
parameter (e.g. ssh -s sftp) is the same as invoking sftp. Replace -s sftp with

something else that has a corresponding subsystem entry in sshd_config and practically
any other program can be invoked in the same way. For example, consider this
sshd_config line:

subsystem i map [usr/sbin/impd

Page 16 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

This subsystem can then be used to provide secure IMAP sessions between a client and a
server. On the client, the command-line would be:

$ ssh -s imap server.domain.tld

By defining an executable as a subsystem, it can be conveniently executed by a client,
and the communications will be protected by the SSH encryption. This capability can be
leveraged far beyond the default SFTP server function. Note that this ability is specific
to SSH v2, and is not supported under SSH v1.

When using the Chr oot Di r ect or y directive (introduced in OpenSSH v5.0p1) and the
native sftp-server daemon, a user's SFTP session may be chrooted with relative ease (as
compared to using rssh for the same function) . The specifics of chroot are outside the
scope of this paper.

Mat ch

Introduced in OpenSSH v4.4p1, the Match option allows you to create conditional
configuration options. In brief, the Match option allows you to apply a subset of the sshd
configuration options to an arbitrary SSH session. These options override the global
settings for the session.

When the sshd_config file contains a Match statement, the file is read when sshd starts,
then again every time a new SSH session is initiated. Each time the file is re-read, sshd is
looking for Match statements. When it finds one, it checks the criteria specified. If a
match is found, the entries in the file are parsed until another Match statement is
encountered, or EOF is reached. These entries are known as the Match Block.

There are four (4) criteria on which a Match statement may operate: User (the user name
under which the connection is authenticating), Group (a Group to which the
authenticating user belongs), Host (the host name from which the SSH session is
originating) and Address (the IP address from which the SSH session is originating).

WARNING!

Unless you control DNS for all hostnames in a Host
statement, it is dangerous to use it as a selection
criteria, especially if the Match block grants
permissions not found in the global configuration.

Page 17 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Only a relative few sshd configuration commands are valid in a Match block. The most
useful ones are probably AllowTcpForwarding, ChrootDirectory, GatewayPorts,
PermitOpen, Banner, ForceCommand and X11Forwarding. The sample sshd_config
file available in the Reference section below shows some practical examples.

WARNING!

Command-line options specified when sshd is invoked
override settings in sshd_config. In particular, this can
affect the GSSAPIAuthentication option. Read the
OpenSSH documentation thoroughly before using that
option.

With these features and issues in mind, you're ready to edit the sshd_config configuration file.
You're still privileged, so simply:

edit /opt/openssh/conf/sshd_config

Note that this file must be writable by root only. sshd will refuse to run if this file is group- or
world-writable, or if it is located in a directory that is group- or world-writable.

Moving on, if you've not done so yet, exit the root shell. Let's take a look at what we've done:

exit
ne@ost /work/openssh/V5.0pl 26 $ which ssh

[usr/ bi n/ssh

Congratulations, OpenSSH is now installed. Next, we'll build and install rssh.

rssh: Compilation

Like OpenSSH, rssh also uses GNU autoconf. The configure script automatically examines your

system, checks dependencies, and prepares rssh for compilation.

As with OpenSSH, I suggest a few tweaks, starting with the binary location. Again, the default
location is /usr/local, and 1 prefer /opt/rssh. You can see all the possible configuration options, and their

defaults, with the "--help" parameter:

me@ost /work/rssh/v2.3.2 51 $./configure --help

Page 18 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

As before, what you might change from the defaults is largely dependent on your preferences and
standards in your environment. I like to change the following defaults:

me@ost /work/rssh/Vv2.3.2 52 $./configure --prefix=/opt/rssh \
--sysconfdi r=/ opt/openssh/ conf \
--wWi th-sftp-server=/path/to/openssh/libexec/sftp-server

Reviewing these specific tweaks:
--prefix=/opt/rssh
See my previous discussion about file locations.
--sysconfdir=/opt/rssh/ conf

Without this, the location of the rssh configuration file would be in /opt/rssh/etc.
I prefer the more-descriptive conf.

--wW th-sftp-server=/path/to/openssh/|ibexec/sftp-server

This option tells the configure script where the sftp-server subsystem exec file
is located. configure would probably find it just fine, I'm merely making sure.
Onmit this if you prefer.

At this point, the configure script should have been run, with any options you wanted, and as
with OpenSSH, troubleshooting system-specific errors is outside the scope of this paper. Among other
things, configure will generate Makefile in the same directory, and this is used for the rest of the
process.

You're now ready to compile the rssh software:

me@ost /work/rssh/V2.3.2 53 $ make

This starts the compilation process. Troubleshooting compilation issues is outside the scope of
this paper, and so I'll proceed to the next stage.

rssh: Installation

If you've gotten to this point without any problems, the rest of the process should be equally
trouble-free. To actually install the program files, you need to have root privilege because, among other
things, you'll be setting SUID bits in file modes, and usually only root can do that. So, invoke su:

ne@ost /work/rssh/Vv2.3.2 55 $ su -

Page 19 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Now that you are privileged, install the program:
make install

Once more, troubleshooting installation error messages falls outside the scope of this paper.
When there are no errors, it's a good idea to check the results, which should look like this (omitting
examination of the man directory):

#1s -la /opt

drwxr-xr-x 7 root ot her 512 Apr 11 17:53 rssh/
#1s -la /opt/rssh

drwxr-xr-x 2 root ot her 512 Apr 11 17:53 bin/
drwxr-xr-x 2 root ot her 512 Apr 11 17:55 conf/
drwxr-xr-x 2 root ot her 512 Apr 11 17:53 |i bexec/
drwxr-xr-x 4 root ot her 512 Apr 11 17:53 nan/

1s -la /opt/rssh/bin

-TWXI-Xr-x 2 root ot her 104664 Apr 11 17:53 rssh*

1s -la /opt/rssh/conf

-rWr--r-- 2 root ot her 1791 Apr 11 17:53 rssh. conf

1s -la /opt/rssh/libexec

-rwsr-xr-x 1 root ot her 103740 Apr 11 17:53 rssh_chroot _hel per*

If everything is correct, and you've installed rssh into a location not normally in your $SPATH
(like /opt/rssh), then you'll probably want to link the rssh executable (and, optionally and not shown, the
documentation) to /usr/bin or wherever is appropriate, like so:

#1n -s /opt/rssh/bin/rssh /usr/bin/rssh
/opt/rssh/bin/rssh is the rssh shell program When you want the rssh restrictions to apply to a
user, simply change the user's shell specification in /etc/passwd, like so (this example assumes the
symlink has been made):

| user: x: 1000: 500: L. User:/hone/l user:/usr/bin/rssh

The configuration file, rssh.conf, is located in /opt/rssh/conf, and this location is hardcoded in
rssh. The next section will delve into syntax and usage in more detail. The sample file included in the
install is actually fairly well commented, and shows a number of useful examples.

In /opt/rssh/libexec, there is rssh_chroot_helper, which is used by rssh to safely transition an
rssh-restricted shell into a chroot jail. Setting up a chroot jail in an rssh environment is frequently a
complex, even daunting, task; and usually very specific to the system in question. You should read the
documentation in the rssh package before attempting it, and because of the system-specific nature of the
task, it's outside the scope of this paper. As of OpenSSH v5.0p1, sshd natively supports chroot, and may
offer a better way of providing a chroot session (but is still out-of-scope for this paper).

Page 20 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

Depending on your security model and level of paranoia, you can leave rssh.conf with its default
ownership and mode (only editable by root), or make it easier for appropriate staff to update it. For
example, if you use a group, say wheel, to list system admin IDs, then you might:

chown root:wheel /opt/rssh/conf/rssh. conf

chnmod 664 /opt/rssh/conf/rssh. conf

1s -la /opt/rssh/conf/rssh. conf

-rWrwr-- 2 root wheel 1791 Apr 11 17:53 rssh. conf

Other optional installation steps include making a copy of the original rssh.conf file before any
changes are made, adding rssh to /etc/shells (if appropriate to your environment), and exiting your
privileged state if it's not necessary for editing rssh.conf:

cp /opt/rssh/conf/rssh.conf /opt/rssh/conf/rssh. conf.original
exit

me@ost /work/rssh/V2.3.2 57 $ cd /opt/rssh/conf

me@ost /opt/rssh/conf 58 $

rssh: Configuration

Once an account's shell has been set to rssh, then when the user connects via sshd, after both
authentication and Privilege Separation have occurred, rssh will consult rssh.conf to determine what
activities, if any, the account may perform on the host. If nothing is permitted, the SSH connection will
be dropped, with an explanatory message. The message text is hardcoded and if you want to change it,
you'll need to edit the source code (see the file util.c).

The rssh.conf file can best be considered as having two types of entries: global and per-user. It's
important to note that the entire file is parsed each time it is read, and the per-user entries override all
global settings whenever a matching per-user entry is found. This means that if you use both types of
entries, then you cannot depend on one to "fill in the blanks" in the other.

In a practical example, consider user bob, whom you have restricted using rssh. If, in rssh.conf,
you set the global allowsftp, but also have a per-user entry for bob, you must specify that bob may use
SFTP in bob's per-user entry. rssh will not allow bob to "inherit" the ability to use SFTP from the global
setting. This also means that if you don't want bob to be able to SFTP into the host, the presence of a
global allowsftp setting won't override the account's per-user entry.

Logging is also configured via rssh.conf, using the logfacility keyword. You can only specify the
Facility for syslog, and the values may be specified two different case-insensitive ways: for example,
LOG_USER and user are considered equivalent. If you do not include this keyword, then the default
Facility is LOG_USER. In general, rssh will log with Severity INFO, but other Severity levels are used.
Logging begins after rssh drops its root privileges (a safety measure), and is always performed (turning
off all logging would require editing the code).

Page 21 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

The keywords allowscp, allowsftp, allowcvs, allowrdist and allowrsync are global settings, each
used to enable a specific service through SSH. Similarly, the global umask keyword allows you to
override any system default or shell-based file masks, and apply a consistent mask for scp and sftp
operations. The umask should be specified using octal notation (e.g. 022). These settings will apply to
all user accounts that have a shell of rssh and for which a per-user entry is not found.

The chrootpath keyword, also a global, defines the path for the chroot jail. Specifying this
keyword means that rssh_chroot_helper will be invoked, and the authenticating account chrooted to
the specified directory for all services it can access (assuming no per-user entry applies). As noted
before, creating an rssh-based chroot environment is outside the scope of this paper.

per-user entries are made with the user keyword, and take the form:
user = < user |ID >:< octal -specified umask val ue >:< access bits >:[optional chroot path]

The user ID must match the entry in /etc/passwd and is the text string, not the numeric UID. The
umask value is specified in octal notation, as with the corresponding global value.

There are five (5) access bits, with values of 0 or 1, corresponding, in order, to rsync, rdist, cvs,
sftp and scp. These operate similar to the global allow* keywords. If a specific bit is set to 1, then access
to that service is permitted for the user ID. If the bit is 0, then access to that specific service is denied.
These bits override any global settings, but only for the specific user.

The chroot path is optional, and only specified if you are chrooting the user ID. If omitted, the
user will not be chrooted. This value allows you to place specific UIDs in specific chroot directories,
while still being able to set a global value for all other UIDs. Once more, the nitty-gritty of chroot in the
rssh environment is outside the scope of this paper (and is probably easier to do in OpenSSH v5.0p1).

You may edit rssh.conf with any text editor. There's no validation tool (such as is found with
sshd), so it's a good idea to keep a user ID handy for the express purpose of testing edits. rssh will log

an error if it has trouble parsing the rssh.conf file.

Tips for using OpenSSH and rssh effectively

Here are some tips and tricks that may be useful in your environment. It's important to stress that
this paper is only an introduction to these tools, and there are further ways to leverage these tools to
provide good communications security. A future paper will expand on the materials presented here.

Page 22 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

OpenSSH

1) Keep on top of updates: OpenSSH is under active development, with new releases every few months.
Some releases are minor improvements, while others address significant security issues or provide major
improvements in your ability to configure/control the environment. Subscribe to the openssh-unix-
announce!””! mailing list, a low-traffic, announcements-only list. Even if you use a pre-built package
rather than building from source, keep an eye on developments with OpenSSH, so you know when
getting and testing the new package is a priority (e.g. there is an important fix available) as opposed to
merely routine.

2) Eliminate telnet and FTP: Once you have OpenSSH running, there's almost certainly no reason to
continue to support telnet or FTP as access methods for the SSH-equipped server. And if there is a
reason, then work on eliminating it. Running both sets of protocols is like replacing your home's front
door with solid oak in a steel frame using a deadbolt, but leaving the back door hollow wood with a lock
easily opened using a credit card.

3) Be sure to use PrivSep: The Privilege Separation function of OpenSSH is an important part of
providing a secure remote access service. Don't start your SSH server without it. Avoid enabling the
UseLogin option, which will break PrivSep. The user account for this should look something like:

grep sshd /etc/passwd
sshd: x: 2222: 2222: M. SSH Daenon:/var/enpty:/bin/fal se

And the Privilege Separation directory should look like:

#1s -la /var

.d.r\./v;<r-xr-x 2 root ot her 512 May 28 11:26 enpty/

To reduce the attack profile further, deny unauthenticated connections the ability to use of data
compression (Compression delayed), or even turn off data compression (Compression no) entirely if it
isn't of benefit in your environment.

4) Leverage subsystems: Defining subsystems is a convenient way to make specific functions available
to users. The subsystem executes in the user's security context and shell, so a given user cannot execute a
subsystem to which they didn't already have access. As of OpenSSH v4.4, the subsystem option
supports command-line parameters.

While similar functionality is offered using command flags on key entries in the user's authorized_keys

file, if users are allowed to edit their authorized_keys file, then they can alter what they are allowed to
do. Subsystems centralizes the control of the function.

Page 23 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

5) Use configuration test mode: When invoked with the -t parameter, sshd reads and validates its
configuration file. It exits, reporting any problems to stdout. Whenever you make changes to
sshd_config, it's a good idea to invoke sshd -t to verify the configuration file has no syntax errors.

6) Update back-leveled vendor versions: While many *NIX vendors have started to include OpenSSH (or
their derivative of it) in their OS distributions (e.g. Sun Solaris v9 and later; IBM AIX v5.3 and later),
some are quite tardy with their updates, and a few even are years behind in their pre-built configurations.
When a vendor consistently fails to keep a tool like OpenSSH updated, or their updates are consistently
many releases behind, consider building your own version from source, or finding a different source of
the packages.

7) Consider rssh for chroot for older OpenSSH versions: Prior to OpenSSH v5.0p1, the stock OpenSSH
environment did not support chrooting SSH connections. For those older versions, there were
workarounds/patches to add the functionality; however, those worked either by jailing the entire SSH
server, or by patching the sshd server code to look for specific home directory strings so as to jail the
user. rssh can accomplish the same task without having to jail the entire server or create home directory
paths that may break other functions. The only caveat is that rssh-limited connections cannot access a
shell, so if your goal is to provide users with chroot-ed shell access, then you cannot use rssh.

If you have OpenSSH v5.0p1 or later, then it includes chroot capability, and is probably a better way of
implementing the function.

8) Pay attention to dependencies: OpenSSH depends on both the OpenSSL and zlib software libraries
(in addition to the usual system libraries), and vulnerabilities in those softwares can potentially create
exposures in OpenSSH. Keep track of security updates to OpenSSL and zlib and integrate them into
your environment in a timely manner.

rssh

1) Keep rssh updated: While not as active a development project as OpenSSH (since rssh is the
brainchild of one person), there are still irregular updates to rssh. The author has stated that with respect
to feature/functionality, no further development will occur. That means that any updates are probably to
fix security issues, and therefore worthy of attention. You can keep track of rssh via its SourceForge>”
project page.

2) Understand the limits imposed: By changing an account's shell specification to rssh, you are denying
shell access to that user. The account is limited to the five access methods controlled via rssh: scp, sftp,
rdist, cvs and rsync.

Any other commands defined using the subsystem option will not be available to the rssh-controlled
user account, nor will any commands made available via entries in their authorized_keys file. Further,

Page 24 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

any environment variables defined in .ssh/environment, in key file entries, or set by the SSH client using
SendEnv, even if allowed by the PermitUserEnvironment or AcceptEnv option in sshd_config, will be
ignored by rssh.

3) Don't change root's shell to rssh: You probably weren't planning to do it, but just in case, it's not a
good idea to use rssh as the shell for the root account. Leave root alone. This is especially true for
Solaris environments.

Important!

It is impossible to over-stress the dangers of remote root login. A basic
security premise in this paper is that remote access to privileged accounts
should be blocked for any hosts with connections to untrusted networks
(including the Internet). Even allowing such access within nominally
"trusted" networks carries dangers. As a best practice, remote access should
be limited to un-privileged accounts, and privilege escalated using
appropriate tools (e.g. sudo, su, efc.). For whatever need may seem to
"require" remote root, it's a virtual certainty that other ways exist to achieve
the same goal, using methods that are more secure.

Helpful reference materials

The sample sshd_config file included in with the program is a bare-bones framework, and not all
that well documented. Here is the template that I use:

/ pat h/to/your/sshd _config
$OpenBSD: sshd_config,v 1.74 2006/07/19 13:07: 10 dtucker Exp $

This is the sshd server systemw de configuration file. See
sshd_config(5) for nore information.

This sshd was conpiled with PATH=/ pat h/ your/ daenon/ was/ conpil ed/wi th

The strategy used for options in the default sshd_config shipped with
penSSH is to specify options with their default val ue where

possi bl e, but |eave them commented. Uncommented options change a

def aul t val ue.

Options with BOOLEAN val ues may be "yes" or "true" OR "no" or "false"
but *must* be in | ower-case

Options with tine values default to seconds, are additive, and val ues

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
may optionally have a single-character suffix indicating the tine unit:
#

#

#

7s = seven seconds 12m = twel ve m nutes
3h = three hours 8d = eight days
2w = two weeks 1h30m = ninety m nutes

Page 25 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

| MPORTANT: Conmand-1ine options override settings made via this file

Who When What

#
#
#
Change Log
#
#
#

BHHBHBHHBHHHHBHHBH BB B BB BB B R B R R

HHHH RS RS R R R
Communi cati ons
HHHHEH RS RS H R

Specify the TCP Port to which sshd will bind (default is 22)

Multiple Port statenents may appear and sshd will listen on all indicated ports
Equi val ent command-Iline option: -p

#Port 22

Specify I P address(es) that sshd will bind to at startup

The default is all l|ocal addresses avail able

Use these entries to limt the daenon to specific addresses

|1 Pv4

#Li stenAddress 0.0.0.0

| Pv6

#Li st enAddress ::

Alternatively, the ListenAddress and Port may be conbined in a single statenent
#Li st enAddress 127.0.0.1: 22

SSH Protocols that sshd will support

Default is both 1 and 2

Starting with v4.7pl, default is 2 only
Protocol 2

Send "keepalive" packets to verify connection is still valid?
Default is yes
TCPKeepAl i ve yes

Term nate connection if client does not respond to

ClientAliveCount Max (defaults to 3) nunber of packets sent every
ClientAlivelnterval (defaults to 0) seconds.

The settings bel ow give a client about 45 seconds

to respond before the connection is cut (3 x 15 = 45)

ClientAlivelnterval 15

Client Ali veCount Max 3

Al'l ow sshd to forward TCP connections from aut henti cated

SSH sessions to other ports on this host or on renpte hosts

Default is yes

If you pernmit users to have shell access, then globally disabling

port forwarding is not an effective security neasure, as users

wll be able to run their own forwardi ng nmechani sns

NEVER enable if you have anonynous access to the host (e.g. AnonCVS)

Al | owTcpForwar di ng no

Al ow sshd to bind forwarded ports to addresses other than 127.0.0.1
Default is no

Page 26 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

Setting to yes allows a client to receive forwarded TCP packets

fromany host that the server can receive from Enabling

this has significant security issues and generally shoul d not

be enabl ed wi t hout other control nechanisns, such as TCP W appers
or host-based firewalls.

#CGat ewayPorts no

Limt the TCP ports to which forwarding is permtted
Default allows any TCP port to be forwarded (subject to Al owTcpForwardi ng)
If you all ow TCP Forwardi ng, you should probably use this to
restrict which ports may be forwarded. This setting is not an
ef fective substitute for a nore-conprehensive tool like a firewall
or TCP W appers
Mul ti pl e whitespace-separated permnissions may be listed on a single line
The keyword “all” renmpoves all restrictions (the default)
#Perm t Open host : port
#Perm t Open | Pv4_addr: port
#Perm t Open [| Pv6_addr]: port

HHIFHFHHHHR

Max nunber of *unaut henticated* connections pernmtted at any

one nonent; authenticated connections do not count against this l[imt
Defaults to 10; set to O for no limt

May al so be specified using A/B:C

where A is a | ower bound, and once it is exceeded, there

is a B%chance that the next connection will be summarily
rejected. This chance increases in a linear fashion unti

t he nunber of connections reaches C, when the chance of refusa
becomes 100% Roughly, each unauthenticated connecti on above
A adds to the chance of rejection by ((100 - B)/(C- A))%
MaxSt artups 5

HHHHHH

HHHHBHHH AR H AR H TR

Host Key Locations

HHHHBHHH B H AR H AR

Locations of the private key files that uniquely
identify this server

Host Keys for protocol version 2

Host Key / opt/openssh/conf/ssh_host _rsa_key

Host Key / opt/openssh/conf/ssh_host _dsa_key

HHRHHHBRAHH

Logging

HHHHBHHH R

These options obsol ete Qui et Mode and Fasci st Loggi ng from previ ous versions
As of OpenSSH v4.4, these options also obsolete the SFTP-server-specific
configuration options LogSftp, SftpLogFacility, and SftpLoglLeve

Facility to which sshd | ogs
Sysl ogFacility AUTH

Loggi ng Level /Severity (default is |INFO

Equi val ent conmand-Iline option: -o "LogLevel VERBOSE"
LoglLevel VERBGCSE

Page 27 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

HHHHBHHH B HHHHHHHHH
Aut hentication
HHHHHHHHHHH B HHHBHH

Location (relative to user hone directory) of user's public-key
aut horization file

May al so be an absolute path

Macro substitutions are avail abl e:

%% = User's hone directory as defined in /etc/passwd or el sewhere
% = User nane

%o = A %sign

#Aut hori zedKeysFi |l e . ssh/ aut hori zed_keys

Grace period in which authentication nust occur before connection is dropped
Default is 120 seconds/2 minutes; 0 disables this (infinite tine)

Equi val ent comuand-|ine option: -g

#Logi nGraceTi ne 2m

Limt the nunber of authentication attenpts that may be

made using a single SSH connection (may di scourage dictionary

attacks, or nake them obvious); a side-effect is that a user

with multiple public keys in an identity file may exceed the

[imt (so this option may not be useful in a key-oriented environment)
Default is 6

MaxAut hTries 3

Require inportant files and directories to have strictly linmted perm ssions

Default is yes. Wen enabled, the | ocations nust be owned by the user (or root)
and nust NOT be group- or world-witable

Locations checked:

User's home directory (~)

~/ .rhosts and ~./shosts

User's SSH configuration directory (~/.ssh)

User's SSH key files (~/.ssh/authorized_keys)

StrictMdes yes

Al'l ow keyboard-interactive authentication?

Default is yes

Requires conpile-tine support for BSD AUTH, PAM and/or SKEY; if these
were not included, then this option is ignored

#Chal | engeResponseAut henti cati on yes

Al'l ow passwor d- based aut hentication?

Default is yes

sshd normally uses the password in /etc/shadow, but may al so use PAM or Ker beros
Note that for NetWare, password authentication is the only supported nethod
#Passwor dAut henti cati on yes

Permit accounts with enpty passwords to |ogin?

Default is no

1t is HGLY recomended that you | eave this DI SABLED (no)
#Per m t Enpt yPasswor ds no

Page 28 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

Al'l ow SSH v2-style public-key authentication?
Default is yes
#PubkeyAut henti cati on yes

Al'l ow SSH v2-styl e host-based authentication
Default is no
Uses /etc/hosts.equiv, ~/.rhosts, /etc/shosts.equiv and/or
~/ .shosts for authentication
Host - based aut hentication is problematic and its use is not recomended
#Host basedAut henti cati on no

HHHHH

Allow hosts file in user's ssh directory to override previous setting?
Default is no (which PERM TS the overri de)

To ensure host-based authentication is disabled, these options

shoul d be set to yes

Rhost sRSAAut henti cati on and Host basedAut henti cati on

| gnor eUser KnownHosts yes

Don't read the user's ~/.rhosts and ~/.shosts files

| gnor eRhost's yes

HHHHBHHH B H B

Access Control

HHHHBHHH B H B

ls root allowed to |ogin via SSH?

Default is yes

1t is HHGHY reconmended you DI SABLE this (no) - in nost

environnents, there is no reason root should login renmotely
Per mi t Root Logi n no

List of user accounts (by nanme, not U D #) specifically

deni ed SSH access (even with an otherwi se valid authentication, these

accounts are not allowed to | ogin)

DenyUsers root daenbn bin sys adm | p sshd uucp |isten nobody noaccess nobody4 ftp

List of user accounts (by name, not U D #) specifically

al | owed SSH access (pendi ng successful authentication via a permtted nethod)
#Al | owlUser s

List of groups (by name, not G D #) specifically denied SSH access (even with an
ot herwi se valid authentication, accounts in these groups are not allowed to

| ogi n; does not require the group to be the account's Prinmary group)

#Deny G oups

List of groups (by name, not U D #) specifically all owed SSH

access (pending successful authentication via a permtted nethod;

does not require the group to be the account's Primary group)

#Al | owG oups

NOTE ABOUT RESCOLVI NG ALLOW DENY CONFLI CTS:

sshd will adopt the nost-restrictive interpretati on of AllowUsers/ Al | owG oups

and DenyUsers/DenyGoups. Thus, if any entry can be used to deny an

account |ogin, the account will be denied.

The directives are consulted in the follow ng order regardl ess of the

order they appear in this file: DenyUsers, Al lowJsers, DenyG oups, AllowG oups
HERHHHHH TR R R R

Page 29 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

HUHHHHHHH R SR HH PR SR

User Environment

HUHHHHHH PR SR HH B RS HH

List of environnment variables that sshd will allow the client
to set using the SendEnv option in the client configuration

Default is an enpty string, which causes sshd to ignore all such client requests
#Accept Env

Specify the directory to which the server should chroot() a session
Most useful within a Match bl ock
Chrootdirectory

H* H

Override any command requested by the client and force execution of the follow ng
comuand. Execution occurs in the user's shell environment, with the -c option
NOTE: Cenerally, this is nost useful in a Match bl ock

For ceConmand

Al ow the user to set environnent variabl es using
~/ .ssh/ environment and options in their authorized keys file
Default is no
If you are using rssh, then do NOT enable this, as it wll
create holes that a user can exploit to break rssh security
er m t User Envi ronment no

HHBHHH B R AT H SR B RS H B RRTH

Encryption Ci phers

HHRHHH B R AHH SR B HHH B R AT

NOTE: These options do not force a particular selection order
they nmerely Iinmt the ones sshd will allow a client

to use; clients nust support at |east one of

the listed al gorithns

List of permtted data encryption algorithms

Ci phers aes128-chc, 3des- cbc, bl owfi sh-cbc, cast 128-cbc

Ci phers arcfour 128, ar cf our 256, ar cf our, aes192- cbc, aes256- cbc, aes128-ctr
Ci phers aes192-ctr, aes256-ctr

List of permitted integrity-checking algorithns

MACs nac- md5, hmac- shal, hmac-ri pend160, hnac- shal- 96, hnac- nd5- 96

List of permitted integrity-checking algorithns (v4.7pl added unac- 64)
MACs nac- md5, hmac- shal, hmac-ri pend160, hnac- shal- 96, hnac- md5- 96, umac- 64

HHHHBHHHBHH SR H TR

Kerberos options

HHHHBHHH B AR TR

These options are ignored unless QpenSSH was conpil ed

with Kerberos authentication support; default val ues are shown
Di scussion of these options is outside the scope of this paper

Enabl e direct Kerberos authentication
Equi val ent command-Iline option: -K
#GSSAPI Aut henti cati on no

Del ete Kerberos-forwarded credentials on | ogout
#GSSAPI Cl eanupCredenti al s yes

Page 30 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

Al'l ow sshd to submt user's SSH password for
Ker beros aut hentication (indirect nethod)
#Ker ber osAut henti cati on no

Allow | ocal password authentication if Kerberos fails
#Ker ber osOr Local Passwd yes

Del ete Kerberos-forwarded credentials on | ogout
#Ker ber osTi cket Cl eanup yes

Requires AFS support; instructs sshd to attenpt to get an AFS
token prior to accessing the user's home directory
#Ker ber osGet AFSToken no

HHBHHH B R AHHHHRR

PAM options

HHRHHH B R AR HRR

Enabl e PAM support ?

Defaults to no

Set this to 'yes' to enable PAM aut hentication (via challenge-response)
and sessi on processing. Depending on your PAM configuration, this nay

bypass the setting of 'PasswordAuthentication' and 'Perm t Enpt yPasswords'
#UsePAM no

HHRHHHBHAHH I HRHR

X11 options

HHBHHH B R AHHHHRR

Enabl e forwardi ng of X11 connecti ons

Default is no

WIl be disabled if UselLogin is enabl ed
#X11Forwar di ng no

Reserve X11 Display nunbers so sshd won't try to use them
Default is 10

Prevents sshd fromclashing with existing X servers
#X11Di spl ayOff set 10

Require sshd to enmulate pre-v3.1 X11 server behavi or
Default is yes

Use with older X11 clients

#X11Uselocal host yes

HERHHHHH R

Ot her options

HERHHHH PR

Al'l ow use of data conpression in SSH |inks?

Default is del ayed

Conpression is requested by the client, but this setting allows globally enables
or disables it; conmpression is generally not useful in the LAN environnent
(and may actually hurt performance), but can help in WAN or extranet
environnents; third option, delayed, ignores conpression requests unti
connection is authenticated

Conpr essi on del ayed

H R HH

Page 31 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Force sshd to use systenis login progran?

Default is no

There is generally no need to enable this option, doing so

may conpronise Privilege Separation, and will break X forwarding
#UselLogi n no

Banner nessage di splayed prior to authentication
Must be full, absolute path

Default is no pre-authentication banner

#Banner /etc/warning. txt

Print /etc/notd after successful authentication?

Default is yes

|f your shells print notd by default, this option nay be redundant
NOTE: sshd will obey ~/.hushlogin

#PrintMotd yes

Print date/time of user's last |ogin?
Default is yes

NOTE: sshd will obey ~/.hushlogin
#Print Last Log yes

Use privilege separation user ID

Default is yes

sshd was hardcoded at conpile-tine to use a specific user

account - it is "sshd" unless sonmething else was specified
UsePrivil egeSeparati on yes

Require a connecting host to have DNS reverse nane-resol uti on?

Defaults to yes

Unl ess you control DNS for all hosts legitimtely connecting, this
option is not of nuch value, and probably not worth the overhead
UseDNS no

Full path to daemon's PID file
Defaults to /var/run/sshd. pid
lgnored in debug node

Pi dFil e /var/run/sshd. pid

Specify commands that nay be executed by renote clients

Default is no subsystens

Format: Subsystem <shorthand name> <full path to executabl e> [paraneters]
Full path *nust* be specified; as of OpenSSH v4.4, command-I|ine options

are supported (in prior versions, sshd would refuse to start

if a “Subsystent directive included a command-1ine paraneter)

Shorthand nanmes are case-sensitive

Maxi mum of 256 subsystens may be defined

Subsystem sftp /opt/openssh/libexec/sftp-server

HHRHHH B R AT H SRR HAH SRR T

Protocol vl settings

HERHHHHH T

The configuration above disables SSH vl

The followi ng settings are ignored, but shown here for docunmentary purposes

Page 32 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

Lifetine and size of ephenmeral version 1 server key
#KeyRegenerati onl nterval 1h
#ServerKeyBits 768

Al ow SSH v1-style public-key authentication

Default is yes

Changing to "no" is redundant if SSH vl support is disabled
in the Protocols keyword

#RSAAuUt henti cation yes

Al'l ow SSH v1-styl e host-based authentication

Default is no

Requires host key in /path/to/openssh/configuration/ssh_known_hosts
#Rhost sRSAAut henti cati on no

Host Key for protocol version 1
#Host Key / opt/openssh/etc/ssh_host key

HHHHBHHH R

Matches

HHHHBHHH RS

Match attenpts to match a session based on any of the following criteria

User G oup

Host Addr ess

If there is a match, then the subsequent options are applied, overriding any
gl obal settings for those options nade above. Options are read until EOCF or
until another Match statement is encountered (whether or not it is a

successful Match). The available Options in a Match bl ock are:

Al | owTcpFor war di ng Banner Chroot Di rectory
Gat ewayPort s GSSAPI Aut henti cati on

Host basedAut henti cati on Kbdl nt eracti veAut henti cati on

Ker ber osAut henti cati on Passwor dAut henti cati on

Per ni t Open Per ni t Root Logi n

Passwor dAut henti cati on Rhost sRSAAut henti cati on

RSAAut henti cati on X11Di spl ayOf f set X11For war di ng

X11UselLocal Host

Display a special banner for "internal" clients
Mat ch Address 10.1.2.*
Banner /etc/issue.interna

Al'l ow user bob to forward TCP packets, including those from
ot her hosts
Mat ch User bob

Al | owTcpForwar di ng yes

Gat ewayPorts Yes

BHHBHBHABHBHHBHHHHAH AR H B HBH B

End of /path/to/sshd_config
HERHHHH TR H T H TR H

Page 33 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

This simple shell script automates running the configure script with the options suggested above
for OpenSSH:

#! [usr/ bi n/ bash

./Iconfigure --prefix=/opt/openssh --sysconfdir=/opt/openssh/conf \
--with-zlib=/usr/lib --wth-ssldir=/opt/openssl \
--with-privsep-path=/var/enpty --wth-privsep-user=sshd \
--with-pid-dir=/var/run --wth-nmantype=nan

While well commented, the sample rssh.conf file from the package omits some information. This
template may be slightly clearer:

BHABHBHABHHHHBHABH BB H AR H BB H R B A

#

[/ opt/rssh/conf/rssh. conf

#

Configuration file for SSH Restricted Shell (rssh) v2.3.2
#

Change Log:

Wo When What
e
#

HERHHHHH BB H T H T H R

HERHHHIHIH TR

Loggi ng

HERHHHHH]

Set the log facility

Default is LOG USER

The syntax "LOG USER' and "user" are equival ent (both
will log to Facility USER

Can be any valid Facility

logfacility = LOG AUTHPRI V

HERHHHHH TR

d obal Defaults

HERHHHHH AR

Sets defaults for all users who do not have a Per-User entry bel ow
If aline is cormmented, the activity is disabled

Secure CoPy
#al | owscp

Secure FTP
#al | owsftp

CVS code managenent
#al | owcvs

rdi st
#al | owr di st

rsync
#al | owr sync

Page 34 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

HEHHHHHHH

UMASK

HHHHHHHHH

Specify the default umask for all users who do not have a Per-User
entry bel ow

Requires octal notation

umask = 077

HRHHHHH I

Chroot

HRHHHH I

If you want to chroot users, use this to set the directory where the root of
the chroot jail will be |ocated.

F*

#
#
If you DO NOT want to chroot users, LEAVE TH S COMVENTED OUT

chrootpath = /usr/local/chroot

You can quote anywhere, but quotes not required unless the path contains a
space... as in this exanple.

#chrootpath = "/usr/local/ny chroot™

HHHHBHHHBHHHBHHH AR H AR H AR HR R

Per-User Confguration Options
HHHHBHHHBHHH B H B H A H R R

For mat :

user =<user name>: <UVASK>: <Access Bits>: <optional chroot path>

wher e

<user nanme> is the nane as it appears in /etc/passwd (not the nuneric)
<UMASK> is the octal-notated file creation nask
<Access Bits> are either 0 or 1 and correspond, in order, to
rsync, rdist, cvs, sftp and scp
<chroot path> is not required and specifies a path to chroot the user to

HHFHFHFHEHFHR

The final colon is required only if a chroot path is specified

Fromthe supplied file:

EXAVPLES of configuring per-user options

#user =rudy: 077: 00010: # the path can sinply be left out to not chroot
#user =rudy: 077: 00010 # the ending colon is optiona

#user =rudy: 011: 00100: # cvs, with no chroot

#user =rudy: 011: 01000: # rdist, with no chroot

#user =rudy: 011: 10000: # rsync, with no chroot

#user ="rudy: 011: 00001: /usr/l ocal /chroot" # whole user string can be quoted
#user =rudy: 01" 1: 00001: /usr/| ocal / chroot” # or sonewhere in the mddle, freak
#user =rudy: ' 011: 00001: /usr/Il ocal /chroot' # single quotes too

if your chroot_path contains spaces, it nust be quoted..

In the followi ng exanples, the chroot_path is "/usr/local/ny chroot"
#user =rudy: 011: 00001: "/usr/l ocal /my chroot" # scp with chroot

#user =rudy: 011: 00010: "/usr/l ocal /my chroot" # sftp with chroot
#user=rudy: 011: 00011: "/ usr/l ocal /ny chroot" # both with chroot

Page 35 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

Spaces before or after the '=" are fine, but spaces in chrootpath need

quot es.

#user = "rudy:011:00001:/usr/local/my chroot"

#user “rudy: 011: 00001:/usr/local/my chroot" # neither do coments at |ine end

HERHHHHH TR
End of /path/to/rssh.conf
HERHHHHH

Another simple shell script to automate running the configure script with the options suggested
above for rssh:

#! [/ usr/ bi n/ bash

#

./lconfigure --prefix=/opt/rssh --sysconfdir=/opt/rssh/conf \
--with-sftp-server=/opt/openssh/libexec/sftp-server

SSH. The Secure Shell, The Definitive Guide, Second Edition by Barrett, Silverman & Byrnes, ISBN 0-
596-00895-3 (O'Reilly)!!

Let me start with the fact this book is useful, and does contain a lot of good information. That
said, it can be confusing to read, because it doesn't always do a good job of changing gears when it
switches from talking about the OpenSSH package to the commercial Tectia SSH implementation. The
reader has to be careful to distinguish between the two when the book neglects to make the focus change
explicit. Also, despite being "definitive", I found the omission of even a mention of rssh to be a glaring
deficiency.

Footnotes

[1] http://www.rfc-archive.org/getrfc.php?rfc=854

[2] http://www.rfc-archive.org/getrfc.php?rfc=959

[3] http://www.rfc-archive.org/getrfc.php?rfc=4251

[4] http://www.rfc-archive.org/getrfc.php?rfc=4252

[5] http://www.rfc-archive.org/getrfc.php?rfc=4256

[6] http://www.openssh.org

[7] The specifics of support for platforms vary by the platform. For example, the QNX implementation doesn't
support post-authentication PrivSep. While NetWare has included OpenSSH for years, the NetWare console
environment is not analogous to the *NIX terminal/shell environment; hence, rssh can't really function on the
NetWare/OES-NetWare platform (thus, with regards to Novell's production, this paper is really only applicable to
NetWare's successor, Open Enterprise Server, specifically OES-Linux; or SLES).

[8] http://www.pizzashack.org/rssh

[9] http://www.rfc-archive.org/getrfc.php?rfc=2228

[10] http://www.rfc-archive.org/getrfc.php?rfc=4217

[11] http://www.rfc-archive.org/getrfc.php?rfc=2946

[12] http://www.rfc-archive.org/getrfc.php?rfc=3205

[13] http://www.sunfreeware.com

Page 36 of 38

Secure Remote Access with OpenSSH and rssh © 2007 David Bank

[14] ftp://ftp.porcupine.org/pub/security/index.html

[15] Virtually every Linux distribution includes the OpenSSH package, and practically all of them link OpenSSH
against TCP Wrappers. If you choose to compile your own OpenSSH (perhaps to get a newer version than the
distribution maintainer provides), then linking against TCP Wrappers is recommended.

[16] If you subsequently perform an in-place upgrade of OpenSSH, the moduli file is not replaced if the install
script detects an existing file. The extremely security-conscious (i.e. really paranoid) may consider periodic re-
creation of the moduli file to thwart cryptographic analysis attacks that try to determine the primes used in key
generation as a method to narrow keyspace. Of course, if the reader is actually worried about an attack on that
level, then the reader has problems no technical paper can solve.

[17] As of OpenSSH v4.7p1, the default configuration file only configures support for SSH v2 (although the
package continues to support both versions of the SSH protocol). If you install v4.7p1 atop an existing, earlier,
OpenSSH installation, the configuration is not changed in this respect.

[18] http://nvd.nist.gov/nvd.cfm?cvename=CVE-2005-2096

[19] http://www.mindrot.org/mailman/listinfo/openssh-unix-announce

[20] http://sourceforge.net/projects/rssh/
[21] http://www.oreilly.com/catalog/sshtdg2/index.html

Change Log

Version Date

0.10 2006-Mar-11 Initial creation

1.00 2006-Mar-17 Initial Publication

1.05 2006-Apr-20 Fleshed out OpenSSH configuration options

1.10 2006-Apr-26 Finished OpenSSH configuration options; added Tips

1.15 2006-May-07 Corrected some typos and minor formatting issues; added References for rssh;
corrected ownership/mode information for sshd_config

1.20 2006-Jun-10 More typo fixes; completed Tips

1.25 2006-Jun-11 PDF Version

1.30 2006-Jun-16 Integrated changes from HTML version; fixed typos; minor formatting changes;
added Footnotes section

1.31 2006-Jul-14 Added information on client connection negotiation issues with the
Compression delayed setting in the SSH server; minor documentation edits to
sshd_config and rssh.conf templates

1.40 2006-Aug-20 Clarified TCP Wrappers integration with OpenSSH; fixed minor formatting
inconsistencies

1.45 2006-Dec-16 Updated for OpenSSH v4.5p1; fixed minor typos and formatting

1.50 2007-Jan-08 Added information about Match directives

1.51 2007-Jan-27 Expanded Match information; fixed minor typos and formatting; clarified
Deny/AllowUsers/Groups precedence in example configuration file (PDF only)

1.52 2007-Jan-29 Fixed minor typos and formatting (PDF only)

1.53 2007-Mar-19 Reformatted with open font (PDF only)

1.54 2007-May-03 Updated for OpenSSH v4.6p1; minor formatting edits (PDF only)

1.55 2007-May-07 Added example Match directives; updated HTML version for OpenSSH v4.6p1
and with information from PDF footnotes; minor formatting and typo fixes

1.56 2007-May-13 Minor text updates

1.57 2007-May-17 Fixed a minor typo

1.60 2007-Jun-07 Minor formatting updates

1.65 2007-Nov-11 Updated for OpenSSH v4.7p1 (HTML version only)

Page 37 of 38

Secure Remote Access with OpenSSH and rssh © 2006-2008 David Bank

1.70 2007-Dec-14 Updated for OpenSSH v4.9p1; additional minor text changes
171 2008-Apr-14 Updated for OpenSSH v5.0p1 (PDF version only); typo fixes
1.75 2008-Dec-10 Revision of tips for OpenSSH to accurately re-cap chroot; minor typos fixed;

corrected copyright statement in per-page headers (PDF version only)

End of Document
© 2008 David Bank

Page 38 of 38

	Why Not Packages?
	Standards and Assumptions
	What About Deployment Tool/Technique X?
	OpenSSH and TCP Wrappers in *NIX
	OpenSSH: Installation
	Version		Date		Change

